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a b s t r a c t 

A new Lattice-Boltzmann model for low-Mach reactive flows is presented. Based on standard lattices, the 

model is easy to implement, and is the first, to the authors’ knowledge, to pass the classical freely prop- 

agating flame test case as well as the counterflow diffusion flame, with strains up to extinction. For this 

presentation, simplified transport properties are considered, each species being assigned a separate Lewis 

number. In addition, the gas mixture is assumed to be calorically perfect. Comparisons with reference 

solutions show excellent agreement for mass fraction profiles, flame speed in premixed mixtures, as well 

as maximum temperature dependence with strain rate in counterflow diffusion flames. 

© 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

1. Introduction 

Industries from the aerospace, aeronautic and automotive sec- 

tors are increasingly relying on numerical simulation tools. From 

the occasional use of a research and development department, 

these tools progressively made it to conception and production de- 

partments, where they help to continuously improve designs. The 

field of low-Mach external aerodynamics and aeroacoustics, have 

been particularly impacted by the rapid development of Lattice- 

Boltzmann (LB) methods [1] in the last five to ten years. From in- 

dustrial benchmarks [2–4] , these methods quickly ramped up to 

full scale applications: full-scale cars [5,6] , full-scale aircraft en- 

gines [7] and even full-scale aircrafts [8,9] , oftentimes with out- 

standing results. 

Combustion modeling in the LB framework, however, remain 

relatively marginal within the combustion community. A hybrid 

finite difference lattice Boltzmann model has been presented for 

the simulation of low Mach number flows with significant den- 

sity changes by Filippova and Hanel [10] almost twenty years ago. 

An LB model for combustion modeling was then presented by 

Yamamoto et al. [11–13] for steady and unsteady reactive flows. 

About ten years ago, a pressure-based lattice Boltzmann model was 

presented by Chen et al. for low Mach number combustion simu- 

lations by Chen et al. [14,15] , based on an incompressible LB model 

developed earlier by Guo et al. [16] . An entropic lattice Boltzmann 

model on two-dimensional standard lattice was also presented for 

compressible thermal flows and extended to combustion applica- 
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tions [17,18] . More recently, detailed kinetics were successfully im- 

plemented in the LB framework [19,20] . 

Thermodynamic closure is one of the key issues in extend- 

ing the LB capabilities from low-Mach aerodynamics and aero- 

acoustics to reactive flows, and obtaining satisfactory results in 

cases with significant thermal expansion is challenging, as indi- 

cated by the low-number of combustion models in the LB con- 

text. Most of LB models mentioned above for reactive flows were 

specifically applied under constant pressure, and lack full coupling 

between thermodynamics and the flow. In particular, because their 

equilibrium density distribution function only depends on the local 

density, hydrodynamic pressure and velocity, and not on tempera- 

ture, these models may fail at setting in motion fluids at rest when 

heat-release is applied. This aspect is however critical in represent- 

ing canonical combustion phenomena, such as ignition in a mixing 

layer, or the dynamics of freely propagating flame in a premixed 

mixture. 

To address this issue, more complex, multi-speed models with 

aid of finite volume approach were developed for subsonic and su- 

personic flows [21] , including detonations. Alternatively, coupled 

lattice Boltzmann models on standard lattices have been investi- 

gated in low Mach thermal compressible flows [22,23] . 

The model presented in this work is based on the latter 

[23] and takes full advantage of the simplicity and practicality of 

standard lattice models. It is able to deal with multi-component, 

calorically perfect gas mixtures, and the coupling between the 

thermodynamics and the flow is two-way. Simplified transport 

properties are considered, with non-unity Lewis number set for 

each component. This new LB model for low-Mach reactive flows 

is presented in the first Section. The second Section validates the 

model using Cantera [24] as a reference on canonical combustion 

test cases of premixed and non-premixed combustion. 
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2. Lattice-Boltzmann combustion modeling 

Introductory comments: athermal LB method 

Lattice Boltzmann methods intend to solve the continuous 

Boltzmann equation through discretization of space, time, and ve- 

locity [1,25,26] . In the so-called DnQm model, a n -dimensional 

physical space is filled with a regular lattice (or a Cartesian grid) 

and velocity space is discretized on a set of lattice tensor E 

n 
m 

= 

[ c 0 , . . . , c i , . . . , c m −1 ] . On every lattice node x , f i ( x , t ) denotes the 

density distribution of particle with velocity c i , thus the local den- 

sity ρ and momentum ρu are defined as ρ = �i f i and ρu = �i c i f i . 

A single time relaxation process is used to model the collision 

term of Boltzmann equation in this study, which is the so-called 

Bhatnagar–Gross–Krook (BGK) model [27,28] . 

f i ( x + c δt, t + δt) − f i ( x , t) = − 1 

τ
[ f i ( x , t) − f eq 

i 
( x , t)] , (1) 

where τ is the relaxation parameter, δt is the time increment and 

δt = δx / c . f i ( x , t ), f i ( x + c δt, t + δt) are the distribution functions 

associated with the i th discrete velocity c i , and f 
eq 
i 

is the i th equi- 

librium distribution function given by Qian et al. [1,25] 

f eq 
i 

= ρw i 

[ 
1 + 

c i · u 

c 2 s 

+ 

( c i · u ) 2 

2 c 4 s 

− u 

2 

2 c 2 s 

] 
, (2) 

where w i is the weight coefficient associated to discrete velocity c i 
and c s is sound speed. 

Using the Chapman–Enskog multiscale technique [28] , the 

equivalent Navier–Stokes equations can be recovered as 

∂ρ

∂t 
+ ∇ · (ρu ) = 0 , (3) 

∂ρu 

∂t 
+ ∇ · (ρu u ) = −∇p + ∇ ·

[
ρν(∇ u + (∇ u ) T ) 

]
, (4) 

where the kinematic viscosity ν is related to the relaxation param- 

eter through 

τ = 

ν

c 2 s δt 
+ 

1 

2 

. (5) 

And, the pressure is related to the density by the equation of 

the state p = ρc 2 s . The equation of state used in this base model 

is clearly not suitable for reactive flows, as no temperature is con- 

sidered. The most simple acceptable equation of state for reactive 

flows is probably the ideal gas law, relating the gas pressure and 

temperature through 

p = ρr T , (6) 

where r = R/ W , with R the gas constant, and 

1 / W = 

∑ 

k 

Y k /W k , 

linking the mean molecular weight W to the species molecular 

weights W k and the species mass fractions Y k . 

A hybrid thermal LB model 

Considering the third order Hermite expansion of Maxwell–

Boltzmann distribution, one can obtain the equilibrium distribution 

function in discrete Gauss–Hermite space [26] 

f eq 

i 
= f ( 

0 ) 
i 

= ρw i 

[ 

1 + 

c iαu α

c 2 s 

+ 

A 

( 2 ) 
αβ

Q 

( 2 ) 
iαβ

2 c 4 s 

+ 

A 

( 3 ) 
αβγ

Q 

( 3 ) 
iαβγ

6 c 6 s 

] 

, 

A 

( 2 ) 
αβ

= u αu β + ( θ − 1 ) c 2 s δαβ, Q 

( 2 ) 
iαβ

= c iαc iβ − c 2 s δαβ, 

A 

( 3 ) 
αβ

= u αu βu γ + ( θ − 1 ) c 2 s [ uδ] αβγ , Q 

( 3 ) 
iαβ

= c iαc iβc iγ − c 2 s [ cδ] αβγ , 

(7) 

where [ cδ] αβγ = c αδβγ + c βδαγ + c γ δαβ , δαβ is the Kronecker 

symbol and θ is the non-dimensional temperature 

θ = 

r T 

c 2 s 

= 

RT 

c 2 s 

∑ 

k 

Y k 
W k 

(8) 

The moment of equilibrium distribution function on the nearest 

neighbor type lattices, hereafter referred to as standard lattices 

(D2Q9, D3Q19, D3Q27, etc.), are then ∑ 

i 

f (0) 
i 

= ρ, (9) 

∑ 

i 

f (0) 
i 

c iα = ρu α, (10) 

∑ 

i 

f (0) 
i 

c iαc iβ = ρr T δαβ + ρu αu β, (11) 

∑ 

i 

f (0) 
i 

c iαc iβc iγ =ρr T (u αδβγ + u βδγα+ u γ δβα) + ρu αu βu γ + �αβγ , 

(12) 

where �αβγ is a deviation term due to defect of symmetry of 

standard lattices for the third order moment. This deviation can be 

corrected by introduction of an extra force term s i = Q iαβ
∂ 

∂x γ
�αβγ

in the lattice Boltzmann equation. The LB equation with a force 

term in the second order accuracy scheme is given as [29] 

f i ( x + c δt, t + δt) = f i ( x , t) − 1 
τ [ f i ( x , t) − f eq 

i 
( x , t)] (13) 

+(1 − 1 
2 τ ) s i 

where the external force term s i reads [23] 

s i = Q ixx 

∂ 

∂x 
[ ρu x (1 − θ − u 

2 
x )] + Q iyy 

∂ 

∂y 
[ ρu y (1 − θ − u 

2 
y )] , (14) 

in two dimensions. 

The mass and momentum conservation equations derived 

through Chapman–Enskog expansion from this model remain un- 

changed compared to the classical athermal version (3) and (4) , 

with the exception of the equation of state and the relation be- 

tween the relaxation time and the viscosity (5) , which now reads 

τ = 

ν

θc 2 s δt 
+ 

1 

2 

. (15) 

The approach proposed here is hybrid: coupled with this lattice 

Boltzmann description, temperature T and mass fractions Y k equa- 

tions are solved following a classical finite difference method 

∂T 

∂t 
+ u α

∂ 

∂x α
T = 

1 

ρ

∂ 

∂x α

(
ρD T 

∂T 

∂x α

)
+ 

ω h 

ρc p 
(16) 

∂Y k 
∂t 

+ u α
∂ 

∂x α
Y k = 

1 

ρ

∂ 

∂x α

(
ρD k 

∂Y k 
∂x α

)
+ 

ω k 

ρ
(17) 

D k and D T are respectively the k th species and thermal diffusivities. 

As to simplify the introduction of this model, we assume calor- 

ically gases, with a constant mixture heat capacity. Transport prop- 

erties are specified through constant Prandtl number and constant 

Schmidt number for each species following [30] 

D T = 

ν

P r 
, D k = 

ν

Sc k 
. (18) 

Physical and lattice units for length, time, mass and temper- 

ature are related through a reference length scale L 0 , the phys- 

ical sound speed c sp for space and time, a reference density ρ0 
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