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A computational technique for solving the Poisson-Nernst-Planck (PNP) equations is developed which
overcomes the poor convergence rates of commonly used algorithms. The coupled Poisson and charge
continuity equations are discretized using an unstructured cell-centered finite volume method. A New-
ton-Raphson linearization accounting for the coupling between the equations through boundary condi-
tions, and the space charge and drift terms, is developed. The resulting linear system of equations is
solved using an algebraic multigrid method, with coarse level systems being created by agglomerating
finer-level equations based on the largest coefficients of the Poisson equation. A block Gauss-Seidel
update is used as the relaxation method. The method is shown to perform well for the transport of K*
and Cl” in a synthetic ion channel for driving voltages, surface charges, ion concentrations and channel
aspect ratios ranging over several orders of magnitude.
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1. Introduction

Charge transport in the presence of an electric field occurs in a
wide variety of modern microsystems, both natural and synthetic.
Examples include electro-diffusion and electro-kinesis in biological
systems [1,2], nanofluidic diodes [3], in a variety of electro-hydro-
dynamic (EHD) and ion-driven flows [4,5], and in microelectronics
[6]. One area that has received particular attention in recent years
is charge transport in ion channels [7-9], which occur in all biolog-
ical cell membranes. lon channels are formed by the folding of ami-
no acids to form a water channel through the cell membrane [10].
The side chains of the amino acids can be ionized and can carry
permanent charge, the nature and strength of which depends on
the solute in which they are immersed. The permeability of the
ion channel to specific ions, such as Na*, K", and Cl", is controlled
by this charge distribution. The regulation of the flow of ions in and
out of the cell is critical to maintaining the necessary ion concen-
trations in the cell. A large community of researchers has per-
formed both experimental and computational investigations of
biological ion channels [7-16]. Charge transport also plays a criti-
cal role in other biological applications. For example, electro-diffu-
sion is integral to the communication between neurons and muscle
fibers, which is mediated by the diffusion of neurotransmitters at
synapses and their consumption by hydrolyzation reactions in
post-synaptic membranes [2].

With the advent of modern micro- and nano-fabrication
processes, interest has focused on the similarity of biological ion
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channels to microelectronic devices [17-19]. Researchers have
sought to mimic biological structures in micro- and nano-electro-
mechanical systems (MEMS and NEMS) [19]. In the electronics
cooling arena, researchers have exploited similar physics to
develop EHD-driven micropumps [4]. Here, the primary pumping
mechanism is the drag exerted by charged ions on a solvent fluid
by an imposed traveling electric field; charge transport occurs pri-
marily due to the electric field, but may also be assisted by fluid
convection.

The Poisson-Nernst-Planck (PNP) equations have widely been
used to simulate these classes of ion transport, and with careful
modeling, good comparisons with experimental data have been
obtained in many instances [12,10]. At extremely small length
scales, the PNP approach may be erroneous. The errors stem from
treating ions as a continuum fluid and ignoring the discrete inter-
actions of individual ions with the domain boundaries. As the
domain scale becomes smaller, the physical volume occupied by
the ions and the solvent molecules must be accounted for; failure
to do so results in an overestimate of ion density [15]. Researchers
have sought to extend the applicability of the PNP approach
through the use of corrective potentials [13,14]. The PNP approach
is particularly useful in simulating synthetic ion channels where
channel diameters, of the order of tens of nanometers [18], are
large enough to mitigate the shortcomings of PNP theory. Methods
designed to address truly nanoscale domains include Brownian
dynamics [15,16], and more recently, molecular dynamics [8,9].
Though these techniques have been shown to yield more accurate
results for small-length-scale domains, their cost, particularly for
typical biological time scales, has thus far been too great to permit
widespread use. As a consequence, PNP theory forms the mainstay
of most MEMS and NEMS simulations today.
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Nomenclature

area vector, Jacobian matrix
electron charge

outward unit normal vector to face
unit vector joining cell centroids
flux vector

drift vector

b I total flux of p and n

kg Boltzmann constant

n number density of negative charges
number density of positive charges
solution vector

residual vector

source vector

temperature

volume

Cartesian coordinates
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Greek

Ay volume of control volume
€ relative permittivity

€ permittivity of free space
¢ potential

r diffusion coefficient

W scalar

o surface charge density

Subscripts and superscripts

f face

0 cell CO

1 cell C1

n iteration
nb neighbor

A variety of techniques have been published in the literature to
solve the PNP equations. Relatively simple simulation approaches
have been taken in the ion channel literature [11,12]. Simple finite
difference methods coupled to explicit successive over-relaxation
(SOR) schemes have been utilized, with 3-D solutions being pub-
lished only in the 1990s [12]. Both the Slotboom form [20], which
is used to transform the charge transport equations into Laplacians,
as well as the primitive Nernst-Planck form, have been used [12].
Reported computational times have been relatively long in these
loosely coupled simple iterative techniques, ranging from several
minutes to several hours per grid point [12]. More efficient
schemes for solving the PNP equations are available in the semi-
conductor device literature [6,10,14,21-25], where they are
referred to as the drift-diffusion equations. But these address
much different length scales, and do not, in general, admit geomet-
ric complexity since this is not necessary for typical device simula-
tions. Recently, a finite volume scheme coupled to Newton
iteration of the underlying non-linear algebraic equations has been
implemented in the device simulator PROPHET [10,14,26] and has
been used to solve for ion transport in porin channels using a stair-
step discretization of the complex pore and membrane geometry
[10]. Suitable initial conditions were first generated by solving
the Poisson-Boltzmann equation under zero concentration gradi-
ents, and continuation techniques were used to incrementally raise
the applied bias in order to obtain solutions. Daiguji et al. [18] have
reported PNP simulations of synthetic ion channels; however, no
details of the underlying computational technique or its perfor-
mance have been reported. They have also reported simulations
coupling the PNP equations to Stokes flow simulations [17], but
again, no details of the computational technique have been pro-
vided. A hybrid method combining a finite element discretization
of the charge continuity equations with a boundary-element sim-
ulation of the potential field has been reported in [1,2]; a sequen-
tial update of the two equation sets has been reported.

As multigrid methods for the solution of linear algebraic equa-
tions reached maturity [27-30], multigrid solutions for the Poisson
equation began to appear [21,22]. These simulations provide a
robust backbone not only for the PNP equation set, but also for
Monte Carlo device simulation. Publications describing multigrid
solutions of the entire non-linear PNP equation set (coupling the
Poisson with charge continuity) are far less numerous, however.
Most published methods only use the multigrid procedure as a lin-
ear solver for the individual governing equations. Meza and Tumi-
naro [23] used a multigrid preconditioner with a conjugate
gradient method to solve the Slotboom form [20] of the drift-diffu-

sion equations. They used a Gummel iteration procedure[31], i.e., a
sequential solution of each of the PNP equations, for steady state
device simulation in the DANCIR code [32]. The resulting solver
was shown to be significantly faster and more parallel than that
using incomplete lower-upper (ILU) preconditioning. Molenaar
[24] employed a mixed finite element discretization of the 2D Pois-
son and drift-diffusion equations. He used Gummel iteration to
resolve non-linearities, and a multigrid procedure for the linear
solution of each of the separate PNP equations. The only truly cou-
pled multigrid method we are aware of is the recent work of Clees
[25], who developed an algebraic multigrid procedure for a cou-
pled solution of the Poisson and drift-diffusion equations for semi-
conductor device applications. There has been extensive
development of coupled multigrid methods for solving the
Navier-Stokes equations in the computational fluid dynamics liter-
ature [33-37] which provide guidance on how similar procedures
may be developed for the PNP equations.

The objective of this paper is to develop a general, robust, and
efficient method for the Poisson-Nernst-Planck equations using
an unstructured solution-adaptive finite volume formulation
[38]. The method addresses complex geometries, and substantially
improves robustness and convergence for strongly non-linear
problems and high-aspect-ratio domains through the use of a cou-
pled algebraic multigrid method. The method is verified against a
known analytical solution and is found to yield accurate results.
It is then applied to the problem of ion transport in a synthetic
nanochannel [18] and is shown to perform well for a wide range
of operating parameters.

2. Governing equations

The governing equations are the Poisson-Nernst-Planck equa-
tions written here for a system of two ion species.
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Here ¢ is the electrostatic potential and p and n are the concentra-
tions of the positively and negatively charged ions, respectively.

Defining the solution vector Q = [¢ p n]", the governing equa-
tions can be written in vector form as
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