
Combustion and Flame 194 (2018) 37–51

Contents lists available at ScienceDirect

Combustion and Flame

journal homepage: www.elsevier.com/locate/combustflame

Fast approximations of exponential and logarithm functions combined

with efficient storage/retrieval for combustion kinetics calculations

Federico Perini ∗, Rolf D. Reitz

University of Wisconsin–Madison 1500 Engineering Drive, Madison, WI 53706, United States of America

a r t i c l e i n f o

Article history:

Received 19 July 2017

Revised 2 October 2017

Accepted 12 April 2018

Keywords:

Exponential

Logarithm

Floating-point algebra

Table interpolation

chemical kinetics

a b s t r a c t

We developed two approaches to speed up combustion chemistry simulations by reducing the amount of

time spent computing exponentials, logarithms, and complex temperature-dependent kinetics functions

that heavily rely on them. The evaluation of these functions is very accurate in 64-bit arithmetic, but

also slow. Since these functions span several orders of magnitude in temperature space, some of this

accuracy can be traded with greater solution speed, provided that the governing ordinary differential

equation (ODE) solver still grants user-defined solution convergence properties. The first approach tack-

led the exp() and log() functions, and replaced them with fast approximations which perform bit and

integer operations on the exponential-based IEEE-754 floating point number machine representation. The

second approach addresses complex temperature-dependent kinetics functions via storage/retrieval. We

developed a function-independent piecewise polynomial approximation method with the following fea-

tures: it minimizes table storage requirements, it is not subject to ill-conditioning over the whole variable

range, it is of arbitrarily high order n > 0, and is fully vectorized. Formulations for both approaches are

presented; and their performance assessed against zero-dimensional reactor simulations of hydrocarbon

fuel ignition delay, with reaction mechanisms ranging from 10 to 10 4 species. The results show that, when

used concurrently, both methods allow global speed-ups of about one order of magnitude even with an

already highly-optimized sparse analytical Jacobian solver. The methods also demonstrate that global er-

ror is within the integrator’s requested accuracy, and that the solver’s performance is slightly positively

affected, i.e., a slight reduction in the number of timesteps per integration is seen.

© 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

The computational cost associated with the solution of stiff

Ordinary Differential Equations (ODEs) describing chemical kinetics

is still one of the major factors limiting the usage of detailed chem-

istry in multidimensional combustion simulations [1] . In a chem-

ically reactive gas-phase environment, conservation equations for

the closed system’s mass and energy appear as rates of change of

species mass fractions Y i and temperature T :

dY i
dt

=

˙ Y i =

W i

ρ

n r ∑

j=1

[(
ν ′′

j,i − ν ′
j,i

)
q j

]
,

dT

dt
=

˙ T = − 1

c̄ v

n s ∑

i =1

U i ̇
 Y i

W i

, (1)

when the mixture of i = 1 , . . . , n s species M i , is subject to a reac-

tion mechanism, i.e., a network of j = 1 , . . . , n r chemical reactions:

∗ Corresponding author.

E-mail address: perini@wisc.edu (F. Perini).

n s ∑

i =1

ν ′
j,i M i �

n s ∑

k =1

ν ′′
j,k M k , j = 1 , . . . , n r ; (2)

ν′ and ν′ ′ are sparse matrices containing stoichiometric reaction

coefficients of reactants and products respectively [2] . The system

usually exhibits very stiff behavior because of both the exponen-

tial form of the reaction rates, and the strongly nonlinear coupling

between species concentrations caused by the law of mass action,

as witnessed by the species’ mutual excitation rate [2] :

∂ ˙ Y i
∂Y j

=

W i

ρ

n r ∑

k =1

{

νk,i

Y j

[

ν ′
k, j k f,k

n s ∏

r=1

(
ρY r

W r

)ν ′
k,r

−ν ′′
k, j k r,k

n s ∏

s =1

(
ρY s

W s

)ν ′′
k,s

] }

,

(3)

where ρ is the system’s density, k f and k r the forward and re-

verse reaction rates, W the species’ molecular weights. Because of

its stiffness, time integration of the reactive system of Eq. (1) is

usually performed as an independent ODE system even in mul-

tidimensional simulations, where an operator splitting scheme is

https://doi.org/10.1016/j.combustflame.2018.04.013

0010-2180/© 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.combustflame.2018.04.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/combustflame
http://crossmark.crossref.org/dialog/?doi=10.1016/j.combustflame.2018.04.013&domain=pdf
mailto:perini@wisc.edu
https://doi.org/10.1016/j.combustflame.2018.04.013

38 F. Perini, R.D. Reitz / Combustion and Flame 194 (2018) 37–51

Fig. 1. IEEE-754 representation of a 64-bit (double) real number.

employed to relax the solver integration constraints towards the

flow time scales (see [3]).

In recent years, several studies have addressed aspects of the

chemical kinetics ODE system to increase its computational effi-

ciency. Some researchers have focused on ODE solution methods

for stiff systems [4–7] aimed at achieving time advancement of the

solution with the least number of integrator timesteps. Perhaps the

greatest CPU time savings have been achieved by adopting fine-

tuned analytical formulations of the chemistry system and its Jaco-

bian [2,8,9] , coupled with sparse matrix algebra [10,11] to take ad-

vantage of the reaction mechanism’s sparsity. Some recent effort s

have also attempted to exploit graphics processing units (GPUs) to

increase throughput of the kinetics calculations [12] .

This study focuses on reducing the cost of evaluating reaction

kinetics functions involving exponentials and logarithms. Two ap-

proaches are presented: first, several fast approximations of the

exp() and log() functions exploiting the IEEE-754 floating-

point number representation [13] were developed. Second, a stor-

age/retrieval approach for costly temperature-dependent functions

was introduced. A simulation matrix featuring 11 reaction mecha-

nisms from 10 to 10 4 species, simulating ignition of fuel–air mix-

tures at conditions relevant to combustion devices was established,

in order to assess the robustness, the accuracy and the speed of

the proposed approaches. Combustion CFD simulations, including

2D and 3D cases, were validated as well. The results demonstrate

significant speed-ups of almost an order of magnitude for the total

CPU time even in presence of analytical Jacobian and sparse alge-

bra; plus, a stabilizing effect of the smoothed function approxima-

tions on the ODE solvers’ performance.

The major contributions of this work can be summarized as

follows:

• A fast equally-spaced tabulation/polynomial interpolation ap-

proach for exponentially-varying functions which has limited

storage needs, is continuous in both function and derivative

evaluations up to an arbitrary order, is defined piecewise like

a spline, but its accuracy is not affected by what happens far

from the interpolation point.

• New, improved methods for fast evaluation of exponential and

logarithm functions, that provide not only a continuous func-

tion, but also continuous derivatives. These methods improve

on the fast exponential approach based on floating point repre-

sentation manipulation methodology developed by Schraudolph

[14] by using an arbitrary-order spline reconstruction of the

mantissa, which compares favorably even to the most recent

formulations [15] .

2. Algorithm description

We developed methods to approximate the exponential and

logarithm functions for 64-bit (double precision) floating-

point numbers complying with the IEEE-745 standard [13] . This

format represents a real number by subdividing the 64-bit space

into three integer strings, as reported in Fig. 1 :

r = (−1)
s 2

x −b (1 + m) , (4)

where:

• s (1 bit) is the sign bit;

• x (11 bits) ∈ [0, 2047] is an integer exponent, shifted by

a fixed bias b = 1023 , such that both negative and positive

integer powers can be represented: 2 x −b ∈ [2 −1023 , 2 +1024] ≈
[10 −308 , 10 +308] ;

• m (52 bits) is the mantissa or a fractional part: m ∈ [0, 1), or

[1 + m) ∈ [1 , 2) .

This model produces an exact represenation of any integer

powers of 2, which have empty mantissa m = 0 ; the mantissa acts

as a truncated linear interpolation between subsequent powers of

two, hence allowing any real numbers r in the range to be repre-

sented within an accuracy of approximately 15 decimal digits.

2.1. Fast exponential function

Approximations of the exponential function exploiting the IEEE-

754 standard were developed by Schraudolph [14] and later

extended by other researchers [16] . These formulations target

32-bit numbers, and are not suitable for double precision integra-

tion of highly stiff problems. However, a recent paper by Malossi

et al. [15] targeted 64-bit numbers and, while coefficients are not

given, employs a McLaurin series expansion, and is included here

for completeness. The exponential function is naturally defined as

a series:

exp (x) = e x =

+ ∞ ∑

n =1

x n

n !
= 1 + x +

x 2

2

+

x 3

3!
+ · · · (5)

and this feature is exploited by accurate exponential evaluation

methods [17] . However, in [14] it was demonstrated that a fast ap-

proximation of the exponential can be achieved by just manipu-

lating the IEEE-754 number representation of Eq. (4) using simple

bit shift and integer algebra operations. First, the exponential op-

eration is reduced to a power-of-two operation with a change of

basis:

e x = 2

x/ log 2 = 2

y ; (6)

if number y is represented as an integer and a fractional part,

y = y i + y f , then its machine representation fits its power-of-two

exponentiation well:

2

y = 2

y i 2

y f = (−1) s 2

x −b (1 + m) . (7)

Sign s = 0 is always positive. The integer term 2 y i can be computed

by simply fitting a suitable integer x = 1023 + y i into the exponent

part of the floating point representation, i.e., by left-shifting integer

x by 52 positions, and casting it into the real number representa-

tion:

2

y i (real64) ← 2

52 · (1023 + y i) (int64) ; (8)

Download English Version:

https://daneshyari.com/en/article/6593448

Download Persian Version:

https://daneshyari.com/article/6593448

Daneshyari.com

https://daneshyari.com/en/article/6593448
https://daneshyari.com/article/6593448
https://daneshyari.com

