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a b s t r a c t

The investigation of laminar natural convection in vertical obstructed channels is conducted using an h-
adaptive finite element algorithm. The adaptive model uses an L2 norm based a-posteriori error estimator
with a semi-implicit, time-stepping projection technique. The advection terms are treated using an expli-
cit Adams Bashforth method while the diffusion terms are advanced by an implicit Euler scheme. By
using the adaptive algorithm, mesh independent studies can be avoided. Results are obtained for thermal
and flow patterns including average Nusselt numbers for different parameters (Rayleigh number, aspect
ratio and locations of obstructions) in both smooth and obstructed channels.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Natural convection flows in vertical channels with obstructions
can be found in many engineering applications, e.g., heat exchang-
ers, heat transfer in electric circuits and energy storage systems.
Considerable experimental work as well as many numerical simu-
lations has been carried on for many years in this area [1–9,15].

From a numerical aspect, much of the early numerical work
stems from the techniques advocated by Spalding [11] and his stu-
dents during the 1960s and early 1970s. Burch et al. [6] investi-
gated the laminar natural convection between finitely conducting
vertical plates by a finite-difference procedure. Said and Krane
[5] investigated laminar natural convection flow of air in a vertical
channel with a single obstruction numerically, using a set of finite
element codes initially developed by Gartling [17]. Desrayaud and
Fichera [7] simulated natural convection in a vertical isothermal
channel with two rectangular ribs, symmetrically located on each
wall. They used the SIMPLER algorithm [16], based on the initial
pressure-based finite volume method technique described by Pat-
ankar [16], a former student of Spalding.

Generally when conducting natural convection simulation stud-
ies, a mesh independent study is typically needed for higher Ra val-
ues; these studies can become time consuming and costly. An
alternative way to avoid this procedure is to apply adaptive mesh-
ing [12]. Many commercial CFD codes today now employ some
form of low-level adaptive meshing. In this study, a locally h-adap-
tive mesh refinement algorithm is coupled with a Petrov–Galerkin
finite element method (PFEM). Meshes are refined in regions

where flow features change rapidly and coarsened where the flow
properties are smooth and unvarying. The adaptation procedure is
guided by an L2 norm based a posterior error estimator. A semi-im-
plicit, time-stepping projection technique is used for the flow sol-
ver. A more detailed description of the projection method is
discussed in Ramaswamy et al. [10] and Wang and Pepper [13].

Simulation results for natural convection in a vertical channel
are obtained first without any obstructions. A channel with one
obstruction is then examined, followed by a channel with two
obstructions. Thermal and flow patterns are obtained for different
Rayleigh numbers, channel aspect ratios and obstruction locations.
Results are compared with those obtained by Said and Krane [5] for
natural convection in a vertical channel with one obstruction. Re-
sults for natural convection within a vertical channel with multiple
obstructions are compared with experimental values obtained by
Cruchaga and Celentano [2].

2. Governing equations and finite element formulation

The following non-dimensional relations are defined (non-
dimensional terms are labeled with ‘‘*”) for the governing equa-
tions of 2-D, incompressible fluid flows with natural convection ef-
fects (Boussinesq approximation and constant fluid properties are
adopted):

x� ¼ x
a
; y� ¼ y

L
; r� ¼ r

L
; u� ¼ u

a=a
; v� ¼ v

a=L
;

P� ¼ P

qa2=L2 ; h� ¼ T � T1
Tw � T1

ð1Þ

The corresponding non-dimensional conservation equations can be
written as (after dropping the asterisks for convenience).

0017-9310/$ - see front matter � 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijheatmasstransfer.2009.03.045

* Corresponding author.
E-mail address: dwpepper@nscee.edu (D.W. Pepper).

International Journal of Heat and Mass Transfer 52 (2009) 4095–4102

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt

mailto:dwpepper@nscee.edu
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


Conservation of mass
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y-direction:

@v
@t
þ u

@u
@x
þ v @v

@y
¼ �rpþ Pr

@2v
@x2 þ Ar2 @

2v
@y2

 !
þ RaPrArh ð4Þ

Conservation of energy
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with the Rayleigh and Prandtl numbers defined as

Ra ¼ gbðTw � T1Þb3

am
; Pr ¼ m

a
ð6Þ

Bilinear quadrilateral elements are chosen in a Petrov–Galerkin
weighted residual finite element approach (PFEM) to discretize the
problem domains. The variables u;v and h are replaced by using
the trial functions

uðx; y; tÞ ¼
Xn

i¼1

Niðx; yÞuiðtÞ ð7Þ

vðx; y; tÞ ¼
Xn

i¼1

Niðx; yÞv iðtÞ ð8Þ

hðx; y; tÞ ¼
Xn

i¼1

Niðx; yÞhiðtÞ ð9Þ

The matrix equivalent form of the integral-based finite element
equations can be expressed as

½M�f _Vg þ ð½K� þ ½AðVÞ�ÞfVg ¼ fFVg ð10Þ
½M�f _hg þ ð½Kh� þ ½AðVÞ�Þfhg ¼ fFhg ð11Þ

where a Petrov–Galerkin approximation is employed to assist in the
discretization of the advection terms associated with velocity and
temperature transport, i.e.,

Wi ¼ Ni þ
ahe

2jV j ½VrNi� ð12Þ

where a ¼ coth c
2� 2

c. A detailed description of the matrix relations
and formalization of the numerical algorithm is described in Wang
and Pepper [13].

3. Adaptation technology

The finite element method has been widely used in various
engineering analysis areas for many decades. In particular, the
use of adaptive techniques with the finite element method has re-
sulted in accurate simulation results with overall reduced compu-
tational storage and solution times. The most popular CFD codes
today employ some form of mesh adaptation.

In this study, an h-adaptive PFEM approach was selected to
solve for fluid flow with convective heat transfer effects. An a-pos-
teriori error estimator based on L2 norm error calculation is
adopted to guide the adaptation procedure [13].

A local element refinement indicator is defined to decide if a lo-
cal refinement for an element is needed, i.e.

ni ¼
keki

�eavg
ð13Þ

when ni > 1, the element is refined; when ni < 1 the element is
coarsed. In an h-adaptive process, the new element size can be cal-
culated by:

hnew ¼
hold

ni
ð14Þ

The entire adaptation procedure is shown in Fig. 1.
A more detailed discussion of the h-adaptive PFEM technique

along with the error estimator as employed in this study is given
in Pepper and Wang [14]. Additional work on the development
and implementation of p- and hp-adaptation is described in Wang
and Pepper [13].

4. Numerical simulations

4.1. Natural convection in a smooth channel

Natural convection in a smooth vertical channel was simulated
as a first comparison study for an obstructed channel flow. Prob-
lem geometry and boundary conditions are shown in Fig. 2. The left
and right walls are kept at high temperature, while the inlet is kept
at a constant low temperature. The horizontal velocity is zero at
the inlet. Both inlet and outlet pressures are also kept at zero.

Nomenclature

a channel width
Ar aspect ratio of the channel, b/L
e error
�eavg average element error
L channel height
L1 distance to the obstruction on the left side wall from the

entrance of the channel
L2 distance to the obstruction on the right side wall from

the entrance of the channel
m total element number
Ni shape function
P pressure
Pr Prandtl number
r radius of obstruction
Ra Rayleigh number
t time

T temperature
Tw wall temperature
T1 ambient temperature
u,v velocity components in x and y direction

Greek symbols
a Petrov–Galerkin weighting function
a thermal diffusivity
b thermal expansion coefficient
h non-dimensional temperature (T � Tw)/(Tw � T1)
l dynamic viscosity
m kinematic viscosity
q density
ni adaptation indicator
g error index
�gmax maximum specified error
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