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a b s t r a c t 

Data from the two different methane/air jet experimental databases is examined to understand the ef- 

fects of spatial variations in the conditional averages of reactive scalars in the context of the Condi- 

tional Source-term Estimation (CSE) model, with particular emphasis on the double-conditional version, 

DCSE. Data from all spatial locations and from the four turbulent flames in the Sandia/TUD database 

are averaged together to generate a global, two-condition (mixture fraction and a species-based reac- 

tion progress variable) conditional average; it is found that the conditional fluctuations around this new, 

two-condition conditional average do not exhibit any significant dependence on either spatial location or 

even on Reynolds number. Furthermore, the normalized RMS of the conditional fluctuations are found 

to be dramatically lower than those seen using only one condition. These results indicate that the two- 

condition conditional averages in the Sandia/TUD piloted methane/air flame series do not vary in space, 

nor vary with Reynolds number. In the Sydney Swirl burner data, the two-condition conditional aver- 

ages exhibit modest gradients in space which are attributed to heat transfer with the bluff body in the 

flow; when a third condition is added – based on the total enthalpy – the spatial gradients in the con- 

ditional average of temperature a dramatically reduced. In both of the cases tested, the normalized RMS 

of the conditional fluctuations around both the two- and three-condition conditional averages are rela- 

tively small. These results imply that, in a simulation of these flames using DCSE, one would be better 

off ignoring spatial variations in the conditional averages and instead collecting all of the spatial data 

together for the integral equation inversion using either two or three conditioning variables in a single, 

global ensemble species involved in relatively slow chemistry, such as NO. The results also imply that the 

underlying assumptions in DCSE – that the conditional variances and the spatial gradients in the condi- 

tional averages are both negligible – are valid when sufficient conditioning variables are used, at least for 

the flames considered. 

© 2018 Published by Elsevier Inc. on behalf of The Combustion Institute. 

1. Introduction 

In Conditional Moment Closure (CMC) models [1] , one derives 

and solves transport equations for the conditional averages of re- 

active scalars. These transport equations require closure for several 

terms. A common closure for several of these terms is often to sim- 

ply neglect them. The solution space in which the equations are 

then solved includes the conditioning variable as a new indepen- 

dent variable. To reduce the computational cost, a common prac- 

tice is to solve on a very coarse computational grid in space [2,3] , 

taking advantage of the fact that spatial gradients in conditional 

averages tend to be small. 

The closure for the chemical source-term is usually made us- 

ing first (conditional) moment closure. The underlying assump- 

tion here is that the fluctuations around the conditional average 

are small and can be neglected. In flames far from ignition and 
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extinction, this assumption has been shown to lead to an accept- 

ably low error [4] , such that predictions of experimental data using 

this approach have been very good – often within the error extents 

of the measurements. 

One approach to expand CMC methods to address flames that 

do include local extinction, re-ignition or autoignition is to use 

a second (conditional) moment closure for the chemical source- 

terms [5–7] . Here, the idea is to use a Taylor series expansion of 

the reaction rate expressions with truncation at the second or- 

der terms. The result depends on the conditional variance and co- 

variance of the reactive scalars involved in the reactions, which 

then necessitates deriving, closing and solving additional transport 

equations for these additional quantities. The method has been 

found to not perform well when the conditional fluctuations are 

large [8] , but it does allow one to predict flames with local extinc- 

tion well, provided the chemistry can be either simplified to a very 

small number of reaction steps [9] or at least a very small number 
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of reaction steps within a larger mechanism can be identified for 

which the second moment closure is needed [10] . 

It has been suggested that adding a second condition to the 

CMC approach could further reduce the conditional fluctuations 

and possibly even account for the effects of ignition and ex- 

tinction, provided the right conditioning variable can be found 

[11–14] . Unfortunately, adding a second condition leads to adding 

yet another independent variable to the system of equations, 

which makes the method much more expensive if it is to be used 

to model a flame in a complex geometry. Also, several new terms 

arise in the doubly-conditioned transport equations that need to 

be modeled. 

It is worth mentioning also that CMC has been successful 

largely only in the non-premixed turbulent flame context: pre- 

mixed implementations of CMC have suffered up until recently 

from insufficiencies in the models for the scalar dissipation, a term 

that is of paramount importance in the conditionally averaged 

transport equations. Improved models for that term have made it 

possible to get good predictions for premixed flames in RANS [15] , 

although the models used may have to be well-tuned – includ- 

ing, as they do, several tunable parameters – and this suggests that 

they may not be appropriate as LES models, where there is usually 

a disinclination from invoking models that require tunable param- 

eters. Partially premixed flames, however, would obviously necessi- 

tate a two-condition CMC approach with the difficulties mentioned 

above. 

Conditional Source-term Estimation (CSE) is an off-shoot of the 

CMC model in which, rather than solving transport equations for 

the conditional averages of the reactive scalars, one obtains them 

by inverting integral equations [16,17] . It has been shown to pre- 

dict both non-premixed [4,18–23] and premixed [24–26] flames 

well in both the RANS and LES contexts, however, there remains 

work to be done, particularly with respect to premixed flames, 

to demonstrate that CSE can accurately reproduce flame dynamics 

in turbulent flames. The two-condition version of CSE – Doubly- 

Conditional Source-term Estimation (DCSE) – has been shown to 

be able to excellent predictions of MILD combustion [27–30] and 

partially premixed flames in the form of a stratified V-flame 

[31,32] and lifted flames [33] . Recently, in a head-to-head compar- 

ison between CSE and CMC methods where both models were im- 

plemented in the code and used to predict the same flames, CSE 

was found to be significantly less computationally time-consuming 

than CMC while providing predictions that were, for the most part, 

considerably closer to the experimental measurements than the 

CMC ones [34] . 

The integral equations in the CSE and DCSE models are formed 

by collecting unconditional averages within control volumes into 

ensembles and assuming that the conditional averages within 

those ensembles are constant, hence (for CSE): 

˜ f (x k , t) = 

∫ 1 

0 

∫ 1 

0 
〈 f | ζ 〉 (t; E ) ̃  P (ζ ; x k , t) dζ , (1) 

or, for DCSE, 

˜ f (x k , t) = 

∫ 1 

0 

∫ 1 

0 
〈 f | ζ , γ 〉 (t; E ) ̃  P (ζ , γ ; x k , t) d ζ d γ , (2) 

where f is a reactive scalar (temperature or a species mass frac- 

tion), ˜ f (x k , t) is the Favre averaged value of that reactive scalar in 

the control volume at x k at time t , 〈 f | ζ , γ 〉 ( t ; E ) is the conditional 

average of that reactive scalar for the ensemble E of control vol- 

umes in which that conditional average is presumed constant, ζ
and γ are the conditioning variables (corresponding, for example 

to the random variables mixture fraction Z and progress variable 

c ) and 

˜ P (ζ , γ ; x k , t) is the Favre joint probability density function 

(PDF) of those two conditioning variables. 

In practice, the inversion of Eq. (1) is highly over-constrained, 

in that there are many more instances of the integral than dis- 

crete intervals in the conditioning space. The inversion is done in a 

least-squares sense, however, because the problem is ill-posed, it is 

necessary to add some kind of regularization, with Tikhonov reg- 

ularization [35] often being the method of choice [16] . There, one 

solves the linear system with an additional linear constraint on the 

solution. In discrete form, the above integral can be written 

�
 b = A 

�
 α, where A k j = ̃

 P (ζ ; x k , t)�ζ j , α j = 〈 f | ζ 〉 j , b k = 

˜ f ( � x k ) 

(3) 

Tikhonov proposed solving the following least-squares problem for 

the solution of the above equation: 

min 

{|| A 

�
 α − �

 b || 2 + λ|| L ( � α − �
 α0 ) || 2 

}
(4) 

where || · || 2 denotes the L2-norm of a vector. In this equation, 

�
 α0 is a priori knowledge of the solution and λ is the regular- 

ization parameter; L is either the unity matrix or a discrete ap- 

proximation to a derivative operator. Bushe and Steiner [16] used 

a second-order derivative operator for L and did not assume any 

value for � α0 in a CSE simulation of a non-premixed flame. The rel- 

ative weight given to the a priori knowledge of the solution, λ, 

introduces a “tunable” parameter to CSE; Bushe and Steiner used 

λ = T r(A 

T A ) /T r(I ) where Tr is the trace of the matrix, which ef- 

fectively means the tunable parameter is set by the problem it- 

self. Grout et al. [36] performed their CSE simulation of a non- 

premixed flame using Tikhonov regularization with the solution at 

the previous time-step for �
 α0 and a unity matrix for L . Jin et al. 

[37] proposed using an unstrained one-dimensional laminar pre- 

mixed flame for �
 α0 in a premixed version of CSE; Salehi et al. 

[24] used this in combination with an L-curve method to provide 

a more robust means of selecting the parameter λ. Whichever ap- 

proach is taken for �
 α0 , it is important to note that this is effec- 

tively a paramater in the model and the model’s accuracy is likely 

dependant on making a good choice for this function. Using a lam- 

inar flame solution seems to be a good choice because, if the flame 

were to actually be in the flamelet regime, that would likely be the 

right solution to get and CSE ends up calculating just how different 

the flame is from the laminar one. Having said that, there remains 

considerable work to be done on this point, including potentially 

exploring different integral inversion algorithms, perhaps within a 

Bayesian framework, as was done recently by Labahn et al. [38] , or 

using a truncated singular value decomposition. 

CSE usually assumes that the PDF can be well approximated 

by a presumed functional form, typically a function of the mean 

and variance of the conditioning variables – although, in princi- 

ple, one could calculate the PDF in some other way. For mixture 

fraction, the β-PDF has proven to work well [4,39] . For progress 

variable, the β-PDF has proven to not work well at all; instead, 

recent work has suggested that using the laminar flame to con- 

struct the PDF [40] or to tabulate results of a calculation using 

the Linear Eddy Model [41] provides a very good approximation to 

the PDF of reaction progress variable in turbulent premixed flames. 

Chemical closure is then achieved with first (conditional) moment 

closure, assuming that the conditional fluctuations are small, such 

that, within each ensemble, 

〈 ˙ ω I | ζ , γ 〉 ≈ ˙ ω I ( 〈 T | ζ , γ 〉 , 〈 Y k | ζ , γ 〉 , 〈 ρ| ζ , γ 〉 ) , (5) 

where ˙ ω is the non-linear rate expression for the chemical reaction 

rate of reaction I . From the collection of all rates in which a given 

species participates, one can them make a linear combination to 

give the rate of formation or destruction of each chemical species 

〈 ̇ ω K | ζ , γ 〉 and then the chemical rates of formation or destruction 

of the different species mass fractions within each control volume 
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