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a b s t r a c t 

Forward propagation of kinetic uncertainty in combustion simulations usually adopts response surface 

techniques to accelerate Monte Carlo sampling. Yet it is computationally challenging to build response 

surfaces for high-dimensional input parameters and expensive combustion models. This study uses the 

active subspace method to identify low-dimensional subspace of the input space, within which response 

surfaces can be built. Active subspace methods have previously been developed only for single (scalar) 

model outputs, however. This paper introduces a new method that can simultaneously approximate the 

marginal probability density functions of multiple outputs using a single low-dimensional shared sub- 

space . We identify the shared subspace by solving a least-squares system to compute an appropriate 

combination of single-output active subspaces. Because the identification of the active subspace for each 

individual output may require a significant number of samples, this process may be computationally in- 

tractable for expensive models such as turbulent combustion simulations. Instead, we propose a heuristic 

approach that learns the relevant subspaces from cheaper combustion models. The performance of the 

active subspace for a single output, and of the shared subspace for multiple outputs, is first demonstrated 

with the ignition delay times and laminar flame speeds of hydrogen/air, methane/air, and dimethyl ether 

(DME)/air mixtures. Then we demonstrate extrapolatory performance of the shared subspace: using a 

shared subspace trained on the ignition delays at constant volume, we perform forward propagation of 

kinetic uncertainties through zero-dimensional HCCI simulations – in particular, single-stage ignition of a 

natural gas/air mixture and two-stage ignition of a DME/air mixture. We show that the shared subspace 

can accurately reproduce the probability of ignition failure and the probability density of ignition crank 

angle conditioned on successful ignition, given uncertainty in the kinetics. 

© 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

1. Introduction 

The development of detailed kinetic models involves compil- 

ing a set of elementary reactions whose rate constants can be 

determined from experimental measurement, reaction-rate the- 

ory, or a combination of both. For large hydrocarbon fuels, many 

reaction pathways and rates are determined via extrapolation 

from the knowledge of the reactions for smaller species, a pro- 

cess that inevitably contains uncertainties. Whether the collective 
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uncertainties in kinetic models can be small enough to meet a cer- 

tain level of chemical accuracy, and to satisfy the needs of combus- 

tion simulations with prescribed accuracy requirements, remains 

an open question. 

The forward propagation of chemical kinetic uncertainties to 

combustion simulation results is one of the central steps to- 

wards addressing the above question. For the simulation of sim- 

ple combustion problems such as homogeneous reactors or one- 

dimensional flames, quantifying the uncertainty in the outputs due 

to kinetic uncertainty, and comparing these output uncertainties 

with experimental data that are endowed with error bars, con- 

stitutes a comprehensive validation of a given chemical mech- 

anism. For the simulation of practical combustion problems in- 

volving turbulence-chemistry interaction and complex boundary 
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conditions, quantifying the uncertainties originating from the ki- 

netics leads to a more rigorous assessment of the predictability of 

simulations. 

For simple combustion problems [1–8] , probabilistic methods 

have been developed to quantify the uncertainties in simulations 

arising from chemical kinetics. Most of the cited works employ 

non-intrusive methods, although intrusive methods have also been 

investigated [2] . For small mechanisms, the computational cost of 

each deterministic simulation is relatively low, such that classical 

Monte Carlo (MC) (or quasi-Monte Carlo) methods that use a large 

number of samples from the kinetic parameter space are afford- 

able [5] . For large mechanisms, each deterministic simulation is 

computationally expensive; hence one must approximate the input 

parameter–to–output relationship using various response surface 

techniques such as the sensitivity analysis based (SAB) method [9] , 

polynomial chaos expansions (PCE) [3,10] , high dimensional model 

representations (HDMR) [11] , artificial neural networks (ANN) [12] , 

and combinations thereof such as ANN-HDMR [12] . These tech- 

niques have been used to facilitate forward uncertainty quantifi- 

cation in conjunction with MC methods. A comprehensive review 

of response surface methods in the context of combustion simu- 

lations can be found in [13] . In addition, PCE and HDMR provide 

global sensitivity indices of the kinetic parameters via a simple 

post-processing of the coefficients in the fitted polynomial repre- 

sentation. These sensitivity analyses partition the output variance 

among individual reactions and provide insights for model devel- 

opment. However, response surface methods – like all function ap- 

proximation methods – face a fundamental scaling difficulty when 

applied to high-dimensional inputs. For example, the number of 

coefficients in a total-degree polynomial expansion increases expo- 

nentially with the number of input parameters; this is a symptom 

of the ‘curse of dimensionality’ [14] . 

Various methods can be used to reduce the dimension of the 

input parameter space and thus accelerate the construction of re- 

sponse surfaces. Local sensitivity analysis and screening methods 

have been used in [11,15-17] to identify the reactions that con- 

tribute most to uncertainties in the outputs. Subsequent response 

surface construction and MC analysis will then only involve these 

important reactions. Recently, the active subspace (AS) dimen- 

sion reduction method has attracted much attention in uncertainty 

quantification (UQ) applications, such as airfoil design [18] , battery 

modeling [19] , hydrologic modeling [20] , and so on. The term “ac- 

tive subspace” first appeared in the thesis by Russi [21] . Further 

discussion of active subspace methods, including numerical imple- 

mentation issues, can be found in Constantine [22] . While sensitiv- 

ity analysis aims at identifying which of the input parameters are 

important for explaining the variability of the output, the AS ap- 

proach identifies important directions in the input space that are 

linear combinations of the input parameters. Since the subspace is 

not constrained to be aligned with the canonical basis, as is the 

case for standard sensitivity analysis, the AS approach can lead to 

more efficient dimension reduction. Given a particular scalar out- 

put of interest, written as a function of the input parameters, the 

important or “active” directions are identified via the dominant 

eigendirections of a matrix defined as the second moment of the 

gradient of this function. A certain number of gradient evaluations, 

at distinct sample points in the input parameter space, are required 

to obtain good estimates of this dominant eigenspace. This number 

grows weakly with the input parameter dimension (e.g., with the 

log of the dimension [23] ). Additionally, since most legacy com- 

bustion codes do not use the adjoint method to efficiently com- 

pute the gradient of a simulation output, the gradients themselves 

must be estimated by either finite differences or local linear fit- 

ting. Consequently, the number of simulation runs required will be 

at least linearly proportional to the dimension of the input param- 

eters [22] . 

The number of simulations that can be undertaken, however, 

is severely limited for expensive models; multi-dimensional tur- 

bulent combustion simulations can take days to weeks for each 

sample of the kinetic parameters. In the work of Mueller et al. 

[24] for large eddy simulations (LES) combined with a steady 

flamelet model, high dimensional kinetic uncertainties are prop- 

agated into a low-dimensional flamelet table, and then injected 

into the LES solver. Specifically, the uncertainty in the kinetic pa- 

rameters leads to uncertainties in the tabulated profiles of density, 

temperature, and species concentration. Only the density is needed 

to evolve the LES governing equations, which proceeds by random 

sampling of density profiles indexed by a single stochastic dimen- 

sion. The uncertainties in the profiles of temperature and species 

concentration can be determined by combining the uncertainties 

of the tabulated profiles of the flamelets and the uncertainties of 

the mixture fraction from the flow solver. This UQ algorithm has 

been demonstrated with Sandia Flame D [25] , showing that the 

uncertainty due to the rate constants is large enough to account 

for nearly all of the discrepancies between the LES/flamelet results 

and experimental measurements. The approach, although efficient, 

is nevertheless only applicable to simulations with flamelet-like 

combustion models. 

In this work, using a heuristic approach analogous to that em- 

ployed for the reduction of detailed chemical mechanisms, we pro- 

pose to identify low-dimensional subspaces of the uncertain ki- 

netic parameters using representative (and cheap) simulations of 

homogeneous reactors and one-dimensional laminar flames. These 

subspaces are then used to quantify the impact of kinetic uncer- 

tainty in the expensive target combustion simulation. This UQ ap- 

proach is also compatible with a wide variety of turbulent com- 

bustion models. 

Of course, training with many different cheap combustion prob- 

lems will, in general, yield many different input subspaces. A way 

of combining subspaces obtained from multiple distinct outputs 

is then required for our overall UQ approach to work. One could 

identify the active subspace for each training model and then take 

a union of these subspaces in a straightforward way (e.g., via 

Gram-Schmidt orthogonalization), but at the price of increasing the 

dimensionality of the subspace. We will instead formulate a shared 

subspace method that yields a subspace whose dimension is no 

larger than the maximum dimension of the active subspace of each 

individual training model. This shared subspace has the property of 

being able to reproduce the marginal probability density function 

of the output of each training model. We will then use the shared 

subspace to propagate uncertainty through the complex/expensive 

combustion model. 

The rest of the paper is organized as follows. In Section 2 , we 

recall the active subspace method and introduce our shared sub- 

space methodology; then we describe our approach for training 

the shared subspace from multiple model outputs. In Section 3 , 

we demonstrate the performance of the active subspace for a sin- 

gle output and the shared subspace for multiple outputs of the 

training models, using mechanisms for hydrogen, methane, and 

dimethyl ether (DME) combustion. Then we evaluate performance 

of our approach for a zero-dimensional HCCI simulation. The con- 

clusion is in Section 4 . 

2. Methodology 

This work focuses on the uncertainties in the reaction rates. Fol- 

lowing previous works [1–3,7,8] , the rate constants of reactions are 

presumed to be independent and the rate constant of an individ- 

ual reaction, e.g., reaction j , is characterized by a lognormal distri- 

bution with a nominal value k j0 and a temperature-independent 

uncertainty factor UF j . We interpret one third of the uncertainty 
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