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a b s t r a c t

The effects of hydrodynamic and thermal heterogeneity, for the case of variation in both the horizontal
and vertical directions, on the onset of convection in a horizontal layer of a saturated porous medium uni-
formly heated from below, with horizontal throughflow, are studied analytically for the case of weak het-
erogeneity. It is found that the horizontal throughflow has no effect on the stability of the longitudinal
modes but it does affect the stability of the transverse modes. When the permeability decreases in the
direction of the throughflow the transverse modes are stabilized (and so the longitudinal ones are
favored). When the permeability increases in the direction of the throughflow a small amount of through-
flow may destabilize the transverse modes and so destabilize the layer as a whole.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The classical Horton–Rogers–Lapwood problem, for the onset of
convection in a horizontal layer of a saturated porous medium uni-
formly heated from below, has been extensively studied. Early
studies of the effects of heterogeneity in this situation are surveyed
in Section 6.13 of Nield and Bejan [1]. The combined effects of ver-
tical and horizontal heterogeneity of permeability, thermal con-
ductivity and vertical temperature gradient have been treated
recently by Nield and Kuznetsov [2–7] and Kuznetsov and Nield
[8] for the case of weak heterogeneity, and this work has been
summarized by Nield [9]. The cases of moderate and strong heter-
ogeneity have been studied by Nield and Simmons [10], Nield and
Kuznetsov [11], Nield et al. [12,13], Kuznetsov et al. [14] and Sim-
mons et al. [15]. A transient problem has been discussed by Nield
and Kuznetsov [16] and Kuznetsov et al. [17]. In this situation it is
the heterogeneity of vertical temperature gradient that is involved.
As far as the authors are aware the above papers are the only pub-
lished analytical studies of the HRL problem with combined hori-
zontal and vertical heterogeneity. A purely numerical simulation
of a similar problem has been reported by Zhang et al. [18]. How-
ever, there is a large number of publications that address the effect
of throughflow of thermal instability in the fluid (see, for example,
[19–22]), which indicates a significant research interest to this
area.

It appears that the effect of horizontal throughflow has hitherto
not been studied. This situation involves an additional complexity
in that the basic flow is now affected by heterogeneity of
permeability.

2. Analysis

Single-phase flow in a saturated porous medium is considered.
Asterisks are used to denote dimensional variables.

When discussing heterogeneity it is essential to have a clearly
defined domain. Hence to be specific we consider a 3D rectangular
box, 0 6 x⁄ 6 Lx, 0 6 y⁄ 6 Ly, 0 6 z⁄ 6 H, where the z⁄-axis is in the
upward vertical direction. We investigate a situation where the ba-
sic flow is unidirectional, in the positive x-direction.

The side walls are taken as insulated, and uniform temperatures
T0 and T1 are imposed at the upper and lower boundaries, respec-
tively. The problem is illustrated in Fig. 1.

Within this box the permeability is K(x⁄,y⁄,z⁄) and the overall
(effective) thermal conductivity is k(x⁄,y⁄,z⁄). The Darcy velocity
is denoted by u⁄ = (u⁄,v⁄,w⁄). The Oberbeck–Boussinesq approxi-
mation is invoked. The equations representing the conservation
of mass, Darcy’s law, and the conservation of thermal energy, take
the form
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Here (qc)m and (qc)f are the heat capacities of the overall porous
medium and the fluid, respectively, l is the fluid viscosity, q0 is
the fluid density at temperature T0, and b is the volumetric expan-
sion coefficient.

2.1. Unidirectional flow

Before we introduce dimensionless variables we will look at the
consequences of requiring that the basic flow be unidirectional, so
that v⁄ = 0 and w⁄ = 0. Now Eqs.(1) and (2a–2c) take the form
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Nomenclature

A aspect ratio (height to width)
c specific heat
H layer depth
~k k/km

k overall (effective) thermal conductivity
km overall mean value of k(x⁄,y⁄,z⁄)eK K/Km

K permeability
KHx harmonic mean value of K(x⁄,y⁄,z⁄) with respect to x⁄

Km overall mean value of K
Lx length of the domain in the x-direction
Ly length of the domain in the y-direction

P dimensionless pressure, ðqcÞf Km

lkm
P�

P⁄ pressure
P0 pressure at x⁄ = 0
P1 pressure at x⁄ = Lx

Ra Rayleigh number, ðqcÞf q0gbKmHðT1�T0Þ
lkm

RaL critical Rayleigh number for longitudinal modes
RaT critical Rayleigh number for transverse modes
t⁄ time
t dimensionless time, km

ðqcÞmH2 t�

T⁄ temperature
T0 temperature at the upper boundary
T1 temperature at the lower boundary
u dimensionless horizontal velocity, ðqcÞmH

km
u�

u⁄ vector of Darcy velocity, (u⁄,v⁄)

v dimensionless vertical velocity, ðqcÞmH
km

v�

V0 dimensional mean velocity of the basic flow
x dimensionless horizontal coordinate, x⁄/H
x⁄ horizontal coordinate
y dimensionless upward vertical coordinate, y⁄/H
y⁄ upward vertical coordinate

Greek symbols
b fluid volumetric expansion coefficient
c1, c2 parameters defined in Eq. (72)
h dimensionless temperature, T��T0

T1�T0

l fluid viscosity
q density
q0 fluid density at temperature T0

r heat capacity ratio, ðqcÞm
ðqcÞf

w streamfunction defined by Eq. (38)

Subscripts
B basic solution
f fluid
m overall porous medium

Superscripts
⁄ dimensional variable

Fig. 1. Definition sketch.
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