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a b s t r a c t

Two new solutions to the equation, describing the diffusion of species during multi-component droplet
evaporation, are suggested. The first solution is the explicit analytical solution to this equation, while the
second one reduces the solution of the differential transient species equation to the solution of the
Volterra integral equation of the second kind. Both solutions take into account the effect of the reduction
of the droplet radius due to evaporation, assuming that this radius is a linear function of time. The ana-
lytical solution has been incorporated into a zero dimensional CFD code and applied to the analysis of a
bi-component droplet evaporation. The case of an initial 50% ethanol–50% acetone mixture and droplets
with initial diameter equal to 142.7 lm moving in air at atmospheric pressure has been considered. To
separate the effect of the moving boundary on the species diffusion equation from a similar effect on
the heat conduction equation inside droplets, described earlier, a rather artificial assumption that the
droplet temperature is homogeneous and fixed has been made. It has been pointed out that the effect
of the moving boundary slows down the increase in the mass fraction of ethanol (the less volatile
substance in the mixture) and leads to the acceleration of droplet evaporation.
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1. Introduction

The species diffusion equation, describing the dynamics of mul-
ti-component systems, its analysis and applications, has been
widely discussed in the literature [1]. One of the most important
applications of this equation is that to the analysis of evaporation
of multi-component droplets [2,3]. In realistic moving droplets,
species diffusion takes place alongside species convection when
Hill-type vortices are formed inside droplets [4]. In most practi-
cally relevant cases, however, the details of species distribution in-
side droplets are not important and the effects of species diffusion
and convection can be described in terms of the spherically sym-
metric effective diffusivity model [3]. In [5] this model was applied
to the analysis of heating and evaporation of bi-component etha-
nol/acetone droplets. In contrast to the previous studies of these
processes, the authors of [5] based their analysis on the analytical
solution to the species diffusion equation, which was incorporated
into the numerical code, rather than on the numerical solution of
this equation. This approach is expected to be more CPU efficient
and accurate compared with the one based on the conventional

approach [6]. The model described in [5] has been generalised in
[7] to take into account coupling between droplets and gas.

Following its wide use in Computational Fluid Dynamics (CFD)
codes, the droplet radius was assumed to be constant during each
time step, but changes from one time step to another were allowed
to take into account droplet evaporation. As shown in [8–10], in
the case of the thermal conduction equation inside droplets this
approach leads to noticeable overestimation of droplet surface
temperature and underestimation of its evaporation time, com-
pared with the approach in which the change in droplet radius dur-
ing the time step is ignored.

The main purpose of this paper is to generalise the analytical
solution to the species diffusion equation, reported in [5,7], to
the case when the changes in droplet radius during the time steps
are taken into account. This new solution will be applied to the
analysis of bi-component droplet evaporation. The importance of
taking into account the changes in droplet radius during the time
step will be investigated.

Basic equations and approximations used in our analysis are
presented and discussed in Section 2. The details of the new
analytical solution of the species diffusion equation are given in
Section 3. In Section 4 this solution is applied to the analysis of
bi-component droplet evaporation. The main results of the paper
are summarised in Section 5.
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2. Basic equations and approximations

Assuming that all processes inside droplets are spherically sym-
metric (droplets are stationary), the equations for mass fractions of
liquid species Yli � Yli(t,R) inside multi-component droplets can be
presented in the following form [3]:

@Yli

@t
¼ Dl

@2Yli

@R2 þ
2
R
@Yli

@R

 !
; ð1Þ

where i > 1, Dl is the liquid mass diffusivity. Yli(t,R) is a twice contin-
uously differentiable function. Eq. (1) needs to be solved with the
following boundary condition [3]:

amð�i � YlisÞ ¼ �Dl
@Yli

@R
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and the initial condition Yli(t = 0) = Yli0(R), where Ylis = Ylis(t) are
liquid components’ mass fractions at the droplet’s surface,

am ¼
j _mdj

4pqlR
2
d

; ð3Þ

�i is the evaporation rate of species.
Note that 0 6 Yli 6 1 due to the physical nature of this

parameter.
We assume that Rd(t) is the linear function of t during each time

step:

RdðtÞ ¼ Rd0ð1þ atÞ; ð4Þ

where a = �am/Rd0.
Although am and a are linked by a simple relation, it is impor-

tant for us to retain the difference between these two parameters.

am describes the rate of removal of species from the surface of the
droplet, while a describes the rate of change in droplet radius dur-
ing time steps. The latter effect was ignored in most previous anal-
ysis of this phenomenon, including [5,7], where it was assumed
that a = 0, but am – 0 was still defined by Eq. (3). In our analysis
both these effects are taken into account.

Assuming that species concentrations in the ambient gas are
equal to zero (Yvi1 = 0), the values of �i can be found from the fol-
lowing relation [5]:

�iðtÞ ¼
YvisP

iYv is
; ð5Þ

where the subscript v indicates the vapour phase. We assume that �i

are still defined by Eq. (5) even in the case when these concentra-
tions are not equal to zero. Eq. (1) can be generalised to take into
account the effect of moving droplets with the help of the effective
diffusivity model [3] in which Dl in Eq. (1) is replaced with

Deff ¼ vY Dl; ð6Þ

where the coefficient vY varies from 1 to 2.72 and can be approxi-
mated as:

vY ¼ 1:86þ 0:86 tanh½2:245log10ðRelScl=30Þ�; ð7Þ

Scl is the liquid Schmidt number defined as:

Scl ¼
ml

Dl
; ð8Þ

ml is the liquid kinematic viscosity, Rel is the Reynolds number based
on droplet radius, liquid transport properties and the maximum sur-
face velocity inside droplets. The latter velocity was calculated as [11]:

Nomenclature

BM Spalding mass transfer number
CF friction drag coefficient
D diffusion coefficient
f function defined by Eq. (32)
F function introduced in Eq. (13) or (16)
G function introduced in Eq. (53)
h0 function introduced in Eq. (21)
H0 function introduced in Eq. (20)
h1 function introduced in Eq. (50)
L latent heat of evaporation
m mass
M molar mass
p pressure or parameter introduced in Eq. (25)
qn parameter introduced in Eq. (33)
R distance from the droplet centre
Rd droplet radius
Ru universal gas constant
Re Reynolds number
Sc Schmidt number
Sh Sherwood number
t time
Us maximal surface velocity
vn eigenfunctions of (25)
V function introduced in Eq. (22)
V function introduced in Eq. (53)
W function introduced in Eq. (16)
X molar fraction
Y mass fraction

Greek symbols
a parameter introduced in Eq. (4)

am parameter defined by Eq. (3)
c activity coefficient
� evaporation rate
H function introduced in Eq. (24)
�H function defined by Eq. (46)
k, kn eigenvalues defined by Eq. (28) or (30)
l0(t) variable introduced in Eq. (20)
l̂0ðtÞ variable introduced in Eq. (51)
m kinematic viscosity
n R/Rd

q density
vY parameter defined by Eq. (7)

Subscripts
a air
amb ambient
b boiling
d droplet
eff effective
eth ethanol
i species
iso isolated
l liquid
part particular
s surface
v vapour
0 initial
1 ambient conditions
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