
Conduction through a damaged honeycomb lattice

C. Pozrikidis ⇑, A.I. Hill
Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, United States

a r t i c l e i n f o

Article history:
Received 24 March 2011
Received in revised form 16 November 2011
Available online 29 December 2011

Keywords:
Honeycomb lattice
Effective conductivity
Monte Carlo simulations
Bond percolation

a b s t r a c t

The temperature distribution and rate of heat transfer across an infinite periodic strip of a honeycomb
lattice consisting of conductive segments or links joined at nodes or junctions is discussed. A pristine
honeycomb behaves like an isotropic medium whose effective conductivity is independent of the orien-
tation of an applied macroscopic temperature gradient. Monte Carlo simulations are performed to deter-
mine the effect of link damage or disruption and lattice deformation due to junction displacement. In the
simulations, a specified percentage of randomly distributed links are assigned a conductivity that is lower
than that of the undamaged links. The balance equations governing the nodal temperatures at the junc-
tions are solved by iteration subject to a periodicity condition along the strip and the Dirichlet condition
along the two infinite edges of the strip. The results illustrate the effect of imperfections on the temper-
ature distribution over the network and document the dependence of the effective conductivity on the
percentage and conductivity of the defective links. In the case of nonconductive damaged links, the effec-
tive conductivity becomes nearly zero when a critical percentage of links are clipped, in agreement with
bond percolation theory. However, the functional form of the number density of possible pathways con-
necting the lower to the upper edge of the strip predicted by percolation theory differs from that of the
effective conductivity. Lattice deformation due to random node displacement has a small effect on the
effective conductivity of the network.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Assessing the rate of transport of heat, mass, electricity, or an-
other appropriate scaled field across a pristine or randomized net-
work of conducting segments or links is a problem of long-standing
interest in the physical, engineering, and mathematical sciences. In
biomechanics, networks of tubes carrying blood are useful models
of capillary flow in healthy and neoplastic tumor tissue. Tree net-
works originating from a point of entry and bifurcating into multi-
ple exit points have been employed in studies of steady and
unsteady blood flow (e.g., [1,2]). Periodic networks with simple
geometries and more general networks produced by Voronoi tes-
sellation have been employed in recent computational studies
(e.g., [3]). The conductive properties of networks of elongated
nanoparticles and nanotubes are of interest in the materials sci-
ence of composite media (e.g., [4]).

The effect of link disruption on the number of pathways con-
necting an entrance to an exit of a particulate or perforated med-
ium has been studied under the auspices of bond percolation
theory. A key parameter is the probability, p, that a conductive link
exists next to another conductive link in a network with a pre-
scribed geometry. The probability, p, can also be interpreted as

the fraction of undisrupted links in a network: p = 1 corresponds
to a pristine network, and p = 0 corresponds to a completely dis-
rupted network. The probability, q, of disrupted links in a network
can likewise be defined as q = 1 � p. Series expansion, other analyt-
ical methods, and Monte Carlo simulations have provided us with
critical thresholds for the percentage of undisrupted links, pc, be-
low which transport is not possible in an idealized network
extending to infinity in all directions, or is negligible in a realistic
network with finite dimensions due to the absence of conductive
pathways (e.g., [5,6]). For example, Monte Carlo simulations of
the percolation properties of a hexagonal lattice consisting of a
bidisperse mixture of regular and attenuated bonds were recently
carried out [7].

The predictions of percolation theory regarding the number of
possible pathways connecting an entrance to an exit, regarded as
a function of p and expressed by the percolation probability PðpÞ
for p > pc, do not describe the effective conductivity of the network,
keff(p) [8]. However, both keff(p) and PðpÞ vanish at the same critical
threshold, pc. Last and Thouless [9] conducted experiments and
presented data on the effective electrical conductivity of a sheet
of colloidal graphite paper perforated randomly with holes. Similar
experiments were performed by Watson and Leath [10] with a
steel-wire, square-mesh screen. Kirkpatrick [11,12] studied by
numerical simulation the effective conductivity of a cubic or
square lattice where defective links are assigned the same low

0017-9310/$ - see front matter � 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijheatmasstransfer.2011.12.006

⇑ Corresponding author.
E-mail address: cpozrikidis@ecs.umass.edu (C. Pozrikidis).

International Journal of Heat and Mass Transfer 55 (2012) 2052–2061

Contents lists available at SciVerse ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.12.006
mailto:cpozrikidis@ecs.umass.edu
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.12.006
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


conductivity. Experimental and theoretical studies have indicated
that keff(p) decreases slowly as p approaches pc according to a
power law with a lattice-dependent exponent.

To reconcile the percolation probability with the effective con-
ductivity, we write keff ðpÞ ¼ lðpÞPðpÞ, where l(p) is a transfer
function describing the effective network mobility. The functional
form of l(p) was discussed by Stinchcombe [13] for branching net-
works with arbitrary coordination number, known as Bethe lattices
or Cayley trees. A comprehensive discussion of the relation be-
tween percolation and conductivity was presented by Pike and
Seager [14,15]. A number of authors performed simulations of pla-
nar and three-dimensional conductive networks and random net-
works produced by Voronoi tessellation (e.g., [16,17]). In recent
work, the effect of junction resistance on the effective conductivity
was considered [18]. Although scaling laws for particular networks
have been proposed near the percolation threshold (e.g.,
[11,18,19]), a general theoretical framework is not available.

In this paper, we study by analytical and numerical methods
heat transport across a test section of a pristine and perturbed hon-
eycomb lattice consisting of conductive links. The honeycomb lat-
tice is made of two hexagonal Bravais lattices separated by an
inner displacement. Previous authors have considered ordered
square or triangular networks parametrized by two indices, or
completely disordered random networks described by connectivity
tables. The honeycomb lattice is of particular interest due to its sig-
nificance in the engineering design of honeycomb plates, panels,
sheets and cages, and its relevance to the atomic structure of car-
bon atoms in graphene and other crystals. Our results will demon-
strate that the honeycomb lattice is able to capture the response of
more general surface tilling produced, for example, by Voronoi
tessellation.

Our main goal in this work is to document the effect of geomet-
rical irregularities and link weakening or disruption on the temper-
ature distribution and effective conductivity of a honeycomb
lattice. Defective links with reduced conductivity and damaged
links with zero conductivity will be considered. The computational
model consists of an infinite periodic strip of a honeycomb struc-
ture resembling chicken wire, as described in Section 2. We will
show that the pristine lattice behaves like an isotropic conductive
medium at length scales that are larger than the cell size; we will
develop an expression for the effective conductivity; and we will
point out that the balance equations at the nodes, or junctions, of

the pristine lattice are finite-difference approximations of the
Laplacian of an underlying continuous function of position, with
an error that scales with the square of the cell radius. The effect
of random perturbations will be assessed by the Monte Carlo sim-
ulations presented in Section 3 and discussed with reference to the
predictions of percolation theory. The main findings, their signifi-
cance, and possible generalizations are discussed in Section 4.

2. Honeycomb lattice

We consider heat conduction through a periodic test section of
an imperfect honeycomb lattice. In the absence of imperfections,
the test section is an infinite horizontal strip of a pristine honey-
comb, as shown in Fig. 1, where one period of the strip is confined
between vertical dashed lines. The cell sides can be generated by
the Voronoi tessellation of a companion hexagonal (equilateral tri-
angular) lattice with base vectors a1 and a2. The nodes of the com-
panion hexagonal lattice are located at the centers of the
hexagonal cells of the honeycomb lattice, as shown in Fig. 1. In a
different construction, the honeycomb lattice arises by selectively
removing rows or columns of nodes from a triangular lattice, indi-
cated by the dotted lines in Fig. 1, so that the surviving nodes are
located at the vertices of two displaced hexagonal lattices.

2.1. Armchair and zigzag orientations

Due to the anisotropy of the hexagonal geometry, two orienta-
tions must be considered. The first orientation yields the armchair
lattice shown in Fig. 1(a), and the second orientation yields the zig-
zag lattice shown in Fig. 1(b). This terminology is consistent with
standard convention in the theory of carbon nanotubes where
one period of a graphene test section is rolled around the y axis
to produce an armchair or zigzag nanotube. A length scale is pro-
vided by the radius of a circle circumscribing a hexagonal cell, a.
The radius of an inscribed circle is given by b ¼

ffiffi
3
p

2 a.
The test section of the armchair lattice shown in Fig. 1(a) con-

sists of N whole cells in the x direction and M whole cells in the
y direction, where N is an even integer and M > 1 is an arbitrary
integer. For the configuration shown in Fig. 1(a), N = 6 and M = 5.
The length of each period of the test section is L ¼ 3

2 Na, the outer
width of the strip is W = 2 Mb, and the inner width of the strip is
D = 2(M � 1)b. The test section of the zigzag lattice shown in

Nomenclature

a outer radius of hexagonal cell
A link cross-sectional area
a1,a2 lattice base vectors
b inner radius of hexagonal cell
D inner width of test strip
k thermal conductivity
keff effective thermal conductivity
‘ link length
L period length
m,n numerical exponents
M number of cells in the y direction
N number of cells in the x direction
Nl number of links
p percentage of intact links
pc critical percentage of intact links
phor percentage of intact horizontal links
pincl percentage of intact inclined links
pvert percentage of intact vertical links
P percolation probability

q percentage of defective links
qc critical percentage of clipped links
qm maximum percentage of clipped links
Q rate of heat transport
Q0 rate of heat transport across a pristine lattice
Q1 rate of heat transport across a composite slab
Ql rate of heat transport through a link
r equivalent radius of link cross-section
T node temperature
T continuous temperature field
W outer width of test strip
b thermal conductivity ratio
c effective temperature gradient
�x,�y node displacement coefficients in the x and y directions
f scaled rate of heat transport
k conductivity, k, integrated over the cross-section of a

link
l network mobility transfer function
. number of nearest neighbors
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