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a b s t r a c t

Inverse problems of identifying the unknown spacewise and time dependent heat sources F(x) and H(t) of
the variable coefficient heat conduction equation ut = (k(x)ux)x + F(x)H(t) from supplementary tempera-
ture measurement (uT(x):¼u(x,Tf)) at a given single instant of time Tf > 0, are investigated. For both
inverse source problems, defined to be as ISPF and ISPH respectively, explicit formulas for the Fréchet gra-
dients of corresponding cost functionals are derived. Fourier analysis of these problems shows that
although ISPF has a unique solution, ISPH may not have a unique solution. The conjugate gradient method
(CGM) with the explicit gradient formula for the cost functional J1(F) is then applied for numerical solu-
tion of ISPF. New collocation algorithm, based on the piecewise linear approximation of the unknown
source H(t), is proposed for the numerical solution of the integral equation corresponding to ISPH. The
proposed two numerical algorithms are examined through numerical examples for reconstruction of con-
tinuous and discontinuous heat sources F(x) and H(t). Computational results, with noise free and noisy
data, show efficiency and high accuracy of the proposed algorithms.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

We study the following inverse source problems of determining
the unknown source terms F(x) or H(t), in the following heat con-
duction problem:

ut ¼ ðkðxÞuxÞx þ FðxÞHðtÞ; ðx; tÞ 2 XT ;

uðx;0Þ ¼ u0ðxÞ; x 2 ð0; lÞ;
uð0; tÞ ¼ 0; uðl; tÞ ¼ 0; t 2 ð0; Tf �;
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from the supplementary temperature measurement:

uTðxÞ :¼ u x; Tf

� �
; x 2 ð0; lÞ; ð2Þ

at the final time Tf > 0. Here XT :¼ fðx; tÞ 2 R2 : x 2 ð0; lÞ; t 2 ð0; Tf �g.
The function u0(x) (initial temperature) and the final data uT(x) sat-
isfy the consistency conditions u0(0) = u0(l) = 0 and uT(0) = uT(1) = 0,
respectively. Note that the measured data uT(x) may have a noise.

For a given source terms F(x) and H(t) the problem (1) is defined
to be the direct problem. When the function H(t) is known and F(x)
needs to be defined, the problem of identifying the unknown space-
wise heat source F(x) in (1) and (2) is defined to be as ISPF. In the
case when the function F(x) is given and H(t) needs to be defined,
the problem of identifying the unknown time dependent heat
source H(t) in (1) and (2) is defined to be as ISPH. The temperature

distribution uT(x) given at the final time Tf > 0 is defined to be the
measured output data.

Heat source identification problems are the most commonly
encountered inverse problems in heat conduction. These problems
have been studied over several decades due to their significance in
a variety of scientific and engineering applications [1–17,19]. In
many heat conduction and diffusion problems, the source terms
are unknown and usually are not easy to detect directly. Instead,
one of the following typical measured output data are available
and feasible from the viewpoint of the experiments:

uTðxÞ :¼ uðx; Tf Þ; x 2 ð0; lÞ ðmeasured final dataÞ;
f0ðtÞ :¼ �kð0Þuxð0; tÞ; x 2 ð0; lÞ ðmeasured left fluxÞ;
l0ð0; tÞ :¼ uð0; tÞ; t 2 ð0; Tf �ðmeasured temperature

on the left end of a rodÞ:
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These conditions are defined to be overspecified boundary (mea-
sured) data, according to inverse problems terminology. Note that
in the case of the measured output data l0(0, t):¼u(0, t) one needs
to impose the flux condition �k(0)ux(0, t) = f0(t) in the direct prob-
lem (1), instead of the condition u(0, t) = 0.

For the inverse source problem (ISP) governed by Eqs. (1) and
(2) there are many studies as can be seen from the papers by
Cannon and Duchateau [4] for identifying the source term
depending on u (i.e. F(x)H(t) � F(u) in Eq. (1)), Reeve and Spiak
[11], Savateev and Duchateau [5] for identifying the distributed
source term. Recovery of a special form source term of a parabolic
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equation with variable coefficients from an overdetermination in
the form of a time integral of solution have been studied by Pri-
lepko and Tkachenko [6]. Many researchers sought the heat
source as a function of only space or time. Thus ISPs for the
spacewise source term have been considered by Yang et al. [2],
Liu [3], and for the spacewise source term have been considered
by Farcas and Lesnic [7], Johansson and Lesnic [8], and Ling et al.
[9]. Numerical solution for the simultaneous identification of
temperature, temperature gradient, and general source terms in
the one-dimensional inverse heat conduction problem, based on
the mollification method and a marching scheme have been pro-
posed by Yi and Murio [16]. For the general type source term
F(x, t) the mathematical analysis of the least square approach for
ISPs, based on weak solution theory for PDEs, have been proposed
by Hasanov [17], and also Hasanov et al. [19]. From the viewpoint
of numerical methods and algorithms for the above ISPs, all these
approaches can be divided into the following groups. In the first
group, the Green’s function method is used to transform the ISP
to an operator equation of the first kind which is known to be
moderately ill-posed. Then various recursive algorithms for the
ISP, with the boundary element method for solving the direct
problem, are emplyed (see, for example, [7,8]). In the second
group of studies, a traditional approach is used to reduce an ISP
to the frst kind Volterra integral equation, and then apply some
regularization techniques to solve the ill-posed problem. Follow-
ing this type formulation, Maalek Ghaini [15] has proven the exis-
tence, uniqueness and stability theorems, although no numerical
procedures and examples were presented. In the next more wide
group of studies least square approach with subsequent use of
gradient methods, in particular, Landweber type iteration algo-
rithms for the numerical solution of the ill-posed operator equa-
tion, are used (see [11] and references therein). Finally, there are
various partial identification approaches, similar to Yan et al. [14],
where the ISP is transformed into a three-point boundary value
problem.

This study presents a systematic analysis of inverse source
problems for the distributed source term case F(x)H(t), and aims
to estimate as accurately as possible the spacewise (F(x)) and time
dependent (H(t)) source terms, under the overspecified data uT(x)
at the final time Tf > 0, given by (2). The analysis is based on the

proposed variational approach which permits to derive explicitly
gradients of the both cost functionals:

J1ðFÞ ¼
R l

0 uðx; Tf ; FÞ � uTðxÞ
� �2dx;

J2ðHÞ ¼
R l

0 uðx; Tf ; HÞ � uTðxÞ
� �2dx;

(
ð3Þ

corresponding to the above defined problems ISPF and ISPH. Note
that different from the above sited works, here the thermal conduc-
tivity k(x) is assumed to be not a constant, which permits one to
analyze also composite materials. The second main contribution
of the presented study is the comparative analysis of the inverse
problems ISPF and ISPH. Fourier analysis of these problems shows
that although ISPF has a unique solution, ISPH may not have a un-
ique solution. The conjugate gradient method (CGM) with the de-
rived explicit formula for the gradient of the cost functional J1(F)
is then applied for numerical solution of ISPF. New collocation algo-
rithm, based on the piecewise linear approximation of the unknown
source H(t), is proposed to define the degree of ill-posedness of ISPH
on the one hand, and to construct new collocation algorithm for the
numerical solution of integral equation corresponding to ISPH, on
the other hand. Note that the CGM does not work for ISPH.

The paper is organized as follows. In Section 2 the gradient for-
mulas for the cost functionals J1(F) and J2(H) are derived. Section 3
is devoted to the comparative Fourier analysis of the problems ISPF
and ISPH. Numerical algoritm for the direct and adjoint problems,
as well as numerical examples related to estimation of the compu-
tational noise level eu and also the stopping parameter eJ, are dis-
cussed in Section 4. In Section 5 the numerical results for the
CGM applied to the ISPF are presented for various noise free and
noisy output data. Numerical algorithm for the integral equation
corresponding to ISPH, and computational results related to recon-
struction of the time dependent source H(t) are presented in Sec-
tion 6. Some concluding remarks are given in Section 7.

2. Gradient formulas for the cost functionals of the inverse
source problems

Consider first the cost functional J1(F) corresponding to ISPF. Let
us denote by u = u(x, t;F) the solution of the heat conduction prob-
lem (1), corresponding to the given source term F 2 F , where

Nomenclature

E(n) accuracy error
e(n) convergence error
F(x) spacewise heat source
f0(t) heat flux (W/m2)
H(t) time dependent source
h space stepsize
J1(F) cost functional for F(x)
J2(H) cost functional for H(t)
k(x) thermal conductivity (W/(mK))
l length of rod (m)
M number of basis functions
NCGM CGM iteration number
Nt time mesh points number
Nx space mesh points number
p(n) nth descent iteration
Tf final time
t time variable (s)
tj time mesh points
u0(x) initial temperature (K)
uh temperature vector yj

i
uT(x) final time temperature

x space variable (m)
xi space mesh point

Greek symbols
a CGM iteration parameter
c noise level
eF accuracy error for F
eH accuracy error for H
eJ stopping parameter
eu computational noise level
kn eigenvalues
s time stepsize
u(x, t) adjoint problem solution

Subscripts and superscripts
f index of the final time
i space index
J stopping parameter index
n nth iteration in CGM
T final temperature index
c noise index
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