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a b s t r a c t 

A diffuse interface method for simulating dynamics of premixed flames is proposed. The flame is treated as a 

diffuse moving front with its propagation automatically captured by the convection–diffusion equation of the 

progress variable. The diffusion and reaction terms are constructed using the flame speed and flame thick- 

ness, and the flame speed is taken as a function of the local stretch rate to incorporate the stretch effect. This 

equation is coupled with the continuity equation and the momentum equation to describe flame dynamics in 

complex flows, and the lattice Boltzmann method is employed in the present study as the computational plat- 

form, since its feature of explicit computation is highly consistent with the advantage of flame auto-capturing 

of the present method. To test the performance of the method, simulations including 1-D flame propagation, 

2-D Darrieus–Landau instability, 2-D cylindrical flame propagation with stretch effect, and 2D flame–vortex 

interaction are conducted, and the consequent results are in good agreement with analytical solutions. 

© 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

1. Introduction 

While the numerical simulation of reacting flows can be ex- 

ceedingly challenging and time-consuming due to the strong non- 

linearity of the flow as well as the non-linearity and stiffness of the 

chemical kinetics [1] , several methods have been developed [2–5] 

for the dynamics of premixed flames by treating the flames as mov- 

ing fronts. Prominent among them is the level set or the G-equation 

method, in which the flame is assumed to be infinitely thin and 

thereby represented by an iso-surface of the level set function G . The 

local propagation speed of the flame surface, V f = d x / dt | G = G0 , is di- 

rectly specified to be V f = v | G = G0- + s u n , where v | G = G0- is the local flow 

velocity on the unburnt side and n the unit normal vector, such that 

the flame propagates towards the unburnt mixture at the given flame 

speed s u [2,3] . However, since the flame is assumed to be infinitely 

thin, no information on the thermal structure is provided. As a result, 

it is intrinsically inadequate to describe problems in which the flame 

thickness is comparable to the length scale of the phenomenon being 

examined, e.g. flame–flame or flame–vorticity interactions. Further- 

more, in order to yield robust numerical results, the level set function 

has to be re-initialized frequently during the evolution in order for it 
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to remain a signed distance function, which renders the computation 

rather complicated and may even bring about additional numerical 

error. 

Recognizing that fluid mechanically premixed flames share much 

similarity with two-phase flows, in that the density jumps across an 

interface but remains incompressible in the bulk phases (only low 

Mach number flow is considered), it is conceptually expected that the 

numerical methods for them should be analogous, even though the 

interfaces are characterized by flame propagation and surface tension 

respectively. Consequently the level set and front-tracking methods 

for premixed flames have been widely used in two-phase flow prob- 

lems without significant modification [6–10] . 

In recent years, the diffuse interface method, also known as the 

phase-field method, has proven to be successful in modeling two- 

phase flows including phase transition [11,12] , droplet/bubble dy- 

namics [13–15] , as well as moving contact line motion [16,17] . In this 

method, the fluid composition is represented by an order parame- 

ter that remains constant in the bulk phases while varies rapidly but 

smoothly across the interface, resulting in a finite thickness structure 

rather than a discontinuity description of the interface. Besides, the 

order parameter is able to self-sustain its equilibrium profile by min- 

imizing the total free energy without additional treatment, i.e. the 

interface can be captured automatically. Compared to the level set 

method and the front tracking method, the diffuse interface method 

is physically clearer and numerically much simpler, which makes 

it particularly efficient when dealing with complicated topological 
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changes. It is therefore of interest if the similar methodology can be 

adopted for premixed flames. In this regard we note that Khokhlov 

[18] proposed a flame-capturing technique (FCT) to simulate flames 

in astrophysical applications. Instead of being treated as discontinu- 

ities, flames in FCT are diffused over several grids and captured by an 

advection–diffusion-reaction (ADR)-type equation. However, due to 

the insignificant density jump across astrophysical flames (only about 

10%), thermal expansion effect was not considered in the model. 

Vladimirova et al. [19] and Zhiglo [20] further included density varia- 

tion in the flame capturing equation for simulating terrestrial flames 

with large density jumps. To get the correct flame speed, Vladimirova 

et al. [19] used a calibration factor to the mapping of flame speed 

and flame thickness to the diffusion and reaction terms respectively, 

while the calibration factor would depend on the specific type of 

reaction rate; Zhiglo [20] analytically derived the flame speed and 

flame thickness for constant diffusivity and step-function/KPP reac- 

tion rates, with both the flame speed and flame thickness being de- 

pendent on the thermal expansion ratio. Furthermore, although the 

flame thickness could be kept finite by taking the diffusivity as a func- 

tion of the progress variable, fitting is still inevitable in determining 

the flame speed from the diffusion and reaction terms. 

It is also recognized that numerically solving the moving 

front/interface together with the Navier–Stokes equations could be 

rather complicated since the moving front/interface equation, conti- 

nuity equation, and momentum equation are strongly coupled. How- 

ever, from a mesoscopic point of view, the fluids can be treated as dis- 

crete particles whose evolution is governed by the Boltzmann equa- 

tion, and the macroscopic variables such as density, momentum and 

pressure can be readily obtained by taking moments of the distribu- 

tion function. As a numerical tool to solve the Boltzmann equation, 

the lattice Boltzmann method (LBM) discretizes the continuous par- 

ticle velocity space into a finite set of fixed velocities, such that the 

convection term becomes linear and the calculation is greatly sim- 

plified into the explicit “collision–streaming” scheme. Due to the re- 

markable convenience in numerical implementation, the flexibility in 

handling complex boundary and the efficiency in parallel computa- 

tion, LBM has gained increasing popularity as a promising alternative 

CFD technique [21] . Specifically, in the field of combustion research, 

LBM has been employed as an efficient flow solver to simulate reac- 

tive Rayleigh–Taylor systems [22] , premixed flames [23–26] and dif- 

fusion flames [27] , although modeling premixed flames as moving 

fronts has not been implemented. 

In the present study, we propose a diffuse interface method to 

simulate the dynamics of premixed flames. In the framework of the 

FCT-ADR approach, a new flame capturing equation is developed with 

the diffusion and reaction terms constructed using the flame speed 

and thickness, and the thermal expansion as well as stretch effects 

are taken into account. It is noted that although the present method 

can be numerically solved through various ways without difficulty, 

LBM is employed as the computational platform since its feature of 

explicit computation is highly consistent with the advantage of inter- 

face auto-capturing of the present method. 

In the following the methodology, numerical examples and con- 

clusions are sequentially presented, in Sections 2 through 4 . 

2. Methodology 

2.1. Macroscopic governing equations 

To model premixed flames as moving fronts, the unburnt mixture, 

burnt mixture, as well as the flame front should be first characterized. 

It is noted that in two-phase flows, a field variable, named compo- 

sition and stands for the volume fraction of one fluid, is usually em- 

ployed to distinguish the computational domain into different phases 

[13–15] . For premixed flames, a similar and appropriate choice is the 

progress variable C defined by 

C = 

T − T u 

T b − T u 
= 

{ 

0 , 

0 ∼ 1 , 

1 , 

unburnt mixture 
f lame f ront 

burnt mixture 
, (1) 

where T is the local temperature, and the subscripts u and b denote 

unburnt and burnt mixtures respectively. Realizing that flame prop- 

agation is driven by diffusion and reaction, the evolution of C is de- 

scribed by the convection–diffusion equation [19,20] : 

∂(ρC)

∂t 
+ 

∂(ρC u j )

∂ x j 
= 

∂ 

∂ x j 

[
ρD 

∂C 

∂ x j 

]
+ ˙ ω , (2) 

in which ρ is the density, u the velocity, D the diffusivity of C , and ˙ ω 

the chemical source term. From scaling analysis, since ρD and ˙ ω are 

correlated with the flame speed s u and the flame thickness δ through 

ρD ∼ ρu s u δ and ˙ ω ∼ ρu s u /δ, they can respectively assume the forms: 

ρD = αρu s u δ (3) 

and 

˙ ω = 

ρu s u 

δ
�(C), (4) 

where α is a positive constant and �(C) a function of C . Then, by 

substituting Eqs. (3) and ( 4 ) into Eq. (2) , the transport equation for 

C becomes: 

∂(ρC)

∂t 
+ 

∂(ρC u j )

∂ x j 
= αρu s u δ

∂ 2 C 

∂ x j 2 
+ 

ρu s u 

δ
�(C) (5) 

such that the remaining problem is to determine the expression for 

�(C). 

For 1D planar flame propagation (in the x direction), when the 

inflow velocity from the unburnt mixture equals to the flame speed 

s u , the flame would remain stationary, i.e. ∂ /∂ t = 0 , and ρu ≡ ρu s u is 

valid throughout the flow. In this case, Eq. (5) is simplified to: 

∂C 

∂x 
= αδ

∂ 2 C 

∂ x 2 
+ 

1 

δ
�(C). (6) 

Considering that C ranges from 0 to 1 and the flame has a finite 

thickness of δ, it is reasonable that C assumes the profile 

C(x − x 0 ) = 

1 

2 

+ 

1 

2 

tanh 

(
x − x 0 

δ

)
, (7) 

where x 0 is the location of C = 0.5. It is noted that this profile 

agrees well with the real structure of premixed flames [1] and has 

been also used to describe the diffuse interface in two-phase flows 

[13–15] . Then, by substituting Eq. (7) into Eq. (6) and noting that 

d ( tanh �)/d � = 1 − 2 tanh 

2 �, the expression for �(C) is obtained 

as: 

�(C) = 2 C(1 − C)[4 αC − (2 α − 1 )] . (8) 

By further substituting the continuity equation 

∂ρ

∂t 
+ 

∂(ρu j )

∂ x j 
= 0 (9) 

into the left hand side of Eq. (5) , the transport equation for C then 

becomes: 

ρ

(
∂C 

∂t 
+ u j 

∂C 

∂ x j 

)
= αρu s u δ

∂ 2 C 

∂ x j 2 

+ 

2 ρu s u 

δ
C(1 − C)[4 αC − (2 α − 1 )] . (10) 

As mentioned above, α is defined as a positive constant in the dif- 

fusion term. Since it is now also included in the reaction term, its 

range should be determined more rigorously to ensure numerical ro- 

bustness. To do this, the homogenous mixture without diffusion is 

considered. In this case, the mixture has two stable states, namely the 
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