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a b s t r a c t

The calculation of the diffusion matrix in mixtures of dilute gases with large numbers (N) of components is

revisited. An extremely simple relation providing the multicomponent diffusion matrix as a power series in

terms of the N − 1 independent mole fractions in the mixture is analytically derived from the kinetic theory of

gases. This power series provides a convergent scheme with high convergence rate in the case of a gas mixture

with one major component in which the remaining N − 1 species are diluted. However, the convergence rate

of this power series is lower if a certain number (M) of these species are far from the dilute limit. In that

case we show that a straightforward modification of the former scheme leads to a relation providing the

diffusion matrix as a power series in terms of a subset of N − 1 − M mole fractions, which are assumed to

be dilute, keeping full dependence on the mole fractions of the remaining 1 + M major species. This relation

takes full advantage of the usual situation found in combustion, where there is a relatively small number

of major species (here 1 + M), with the remaining N − 1 − M chemical components (often radicals) being

in trace amounts. The error found in the diffusion fluxes with each one of these new methods in a typical

combustion scenario is analyzed as a function of the number of terms included in the expansion. It is found

that the second method (based on a power series in terms of the dilute species), truncated at the linear term,

produces relative errors less than 1% in all the cases considered—including cases far from the dilute limit.

Hence, this method provides an efficient tool for the accurate calculation of multicomponent diffusion fluxes

in combustion.

© 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

The structure and stability of flame fronts in multi-component

gas mixtures depend, to a great extent, on the diffusion properties

of the chemical species at the flame front, as emphasized in earlier

works [1–9] and more recently by [10–16]. In particular multicom-

ponent transport may lead to substantial local modifications of tur-

bulent flame properties [13]. These modifications are especially no-

ticeable on the propagation velocity and flame stretch in flames with

high curvature regions or when quenching phenomena arise.

As is well known, a proper knowledge of the multicomponent dif-

fusion matrix Dij is essential for accurate calculations of multicompo-

nent diffusion fluxes. At moderate pressures, the ensemble of major

chemical species, as well as the radicals, behaves to a very good ap-

proximation as a multi-component mixture of dilute gases. In that

case the kinetic theory of gases (KTG) provides a general framework

for the calculation of the multicomponent diffusion coefficients Dij,

through the Chapman–Enskog expansion [17–19]. However, in the
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general case of a multicomponent mixture with a possibly large num-

ber of components (N), the multicomponent diffusion matrix is pro-

vided by the KTG in the form of a linear system of N algebraic equa-

tions, which has to be solved. In principle there is no difficulty in

solving that linear system. However, if the number of components

in the mixture is high it becomes computationally expensive to cal-

culate the exact solution for the multicomponent diffusion matrix.

This problem is particularly important in numerical simulations of

unsteady flames, where the diffusion matrix has to be re-calculated

at every time step and every node in the computational mesh. This

difficulty has hampered the accurate evaluation of multicomponent

transport properties in numerical simulations of unsteady (2D and

even more 3D) flames with complex kinetic mechanisms.

In combustion, depending on the fuel involved the number of

species usually found in most detailed kinetic schemes ranges be-

tween O(10) to several tens of species for light fuels as hydrogen,

CO and light hydrocarbons (see, e.g., [20]), and several hundreds of

species for heavy fuels as longer chain hydrocarbons or usual engine

fuels (see, e.g., [21]). However, in some extreme cases the realistic

chemistry of practical fuels requires consideration of several thou-

sands of species. For instance this is the case of methyl decanoate,

used as a biodiesel fuel surrogate, with a detailed kinetic mechanism
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involving N = 3034 chemical species [22]. In such extreme cases

the evaluation of transport properties becomes problematic even

for simple approximations as the mixture averaged transport proper-

ties [14,23–25], which has motivated diffusion coefficient reduction

schemes through species bundling [26]. The difficulties inherent to the

implementation of large kinetic schemes in numerical computations

have been the subject of several reviews (see, e.g., [27] and references

therein).

Whereas chemical kinetics effects have been extensively analyzed

in earlier combustion studies, the detailed diffusive transport which

is equally important regarding flame front properties has received

comparatively less attention. An exception to the former general rule

is provided by the works of Giovangigli (see, e.g., [10,12,16,28–31] and

references therein). For instance [28] proves the convergence of ear-

lier iterative methods of Jones and Boris [3] (see also Oran and Boris

[4]) for the calculation of the diffusion matrix. On the other hand,

projected iterative algorithms for the calculation of transport prop-

erties of multicomponent mixtures are provided in [12,29–31] and

references therein. A different strategy is that adopted by Xin et al.

in a recent work [32]. In this case Xin et al. [32] perform a sensitiv-

ity analysis to determine the group of species which diffusive trans-

port has the strongest impact on the flame dynamics. This group,

typically formed by the major species plus a few specific radicals, is

referred to as the critical-diffusivity-species (CDS), and the remain-

ing species are termed as the non-critical-diffusivity-species (NCDS).

Then, the diffusive transport of the CDS is computed solving the cor-

responding KTG multicomponent linear system, while the diffusive

transport of the NCDS is computed by means of the mixture averaged

approximation.

The purpose of this work is to provide two new simple and accu-

rate analytical expressions for the evaluation of the multicomponent

diffusion matrix and fluxes of typical combustion gas mixtures, that

can be easily handled in future numerical as well as theoretical stud-

ies. The method to achieve this goal is to take full advantage of the

usual scenario often found in multicomponent mixtures with large

numbers of components, especially in combustion, i.e.: there is a sub-

set of a relatively small number of major species, in which the remaining

species are dilute. This is a simplification not taken into account in ex-

isting approximate methods for the calculation of transport proper-

ties of multicomponent mixtures (loc. cit.). The present work is based

on the way devised in [7] for the evaluation of transport properties of

multicomponent systems. In the methodology introduced by [7] the

pertinent KTG results are expanded in terms of the diluted species

mole fractions, and then the corresponding linear systems of equa-

tions are obtained and solved to each order. In [7] this method was

pursued up to first order and the expressions of the diffusive fluxes

were fully worked out and used in an analytical study of the dynamics

of curved flame fronts.

Two new analytical formulae for the calculation of Dij are provided

here: Model 1 (see Eq. (23)) and Model 1+M (see Eqs. (39) and (40)).

Although both models, 1 and 1+M, are analytical results, practical

and efficient application of each model (i.e., fast convergence rate)

depends on the number of major species in the mixture. Model 1 is

extremely simple and has fast convergence rate in the case of a single

major component in which the remaining N − 1 species are diluted.

Model 1+M, on the other hand, considers the case in which there is a

small number (M) of additional major species besides species Nth, in

which the remaining N − 1 − M species are dilute.

The paper is organized as follows. Section 2 summarizes the sub-

ject of Fick diffusion in multicomponent gases, as well as the notation

used. The linear system that determines the diffusion matrix accord-

ing to the kinetic theory of gases is presented in Section 3. This sec-

tion also contains the two new algorithms proposed here to solve that

linear system (see Sections 3.2 and 3.3). The details needed for the

derivation of the former new algorithms and the evaluation of matrix

A (Eq. (21)) are left for Appendix A and Appendix B respectively. The

performance of these two new algorithms is illustrated in Section 4

for the particular case of premixed hydrogen combustion as a func-

tion of dilution. In this section the results found with Model 1 and

Model 1+M are compared to the corresponding results found with:

the familiar mixture averaged approximation; Giovangigli’s iterative

method (see, e.g., [12]); and with the KTG exact results found using

the exact solution for the multicomponent diffusion matrix. Finally,

Section 5 summarizes the main conclusions derived from the former

results.

2. Fick diffusion in multicomponent gases

Let us consider a multicomponent ideal gas mixture with N differ-

ent chemical species and assume that all state variables of the mix-

ture are given quantities (mass density ρ , molecular number density

n, pressure p, absolute temperature T). Using the already classical no-

tation defined in, e.g., [19], we denote the mole fraction of species i

by xi = ni/n, and the mass fraction of species i by yi = ρi/ρ, where

ni is the molecular number density of species i and ρ i is the local

mass density of species i. The mean molecular mass of the mixture,

m = ρ/n, is given by the relations

m =
N∑

i=1

mixi =
(

N∑
i=1

yi

mi

)−1

(1)

where mi is the molecular mass of component i (equal to the corre-

sponding mole mass over Avogadro’s number), which together with

the normalization relations

N∑
i=1

xi =
N∑

i=1

yi = 1 (2)

provide the conversion between mole and mass fractions

mixi = myi (3)

As is well known [9,12,17–19,25,33–35] the contribution to the

mass diffusion flux of species i (ji) owed to composition inho-

mogeneities in the mixture, barodiffusion and differential external

forces, is given by the generalized Fick’s law, which in the present no-

tation reads as

ji = −ρyi

N∑
j=1

Di jd j, i = 1, . . . , N (4)

where Dij is the multicomponent diffusion matrix and di are the mass

diffusion driving force vectors, given by ([19] p. 171)

di = ∇xi + (xi − yi)∇ ln p − ρyi

p

(
F i −

N∑
j=1

yjF j

)
(5)

where Fi is the body force per unit mass acting on species i.

Because of the normalization relations Eq. (2) the mass diffusion

driving force vectors di are linearly dependent

N∑
i=1

di = 0 (6)

as can be easily checked. As a consequence Eq. (4) can be re-written

as

ji = −ρyi

N−1∑
j=1

(
Di j − DiN

)
d j, i = 1, . . . , N (7)

in terms of the first N − 1 diffusion driving force vectors, which are

independent. On the other hand, because of mass conservation the

sum of all mass diffusion fluxes vanishes

N∑
i=1

ji = 0 (8)
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