ARTICLE IN PRESS C. R. Chimie xxx (2017) 1-5 Contents lists available at ScienceDirect # Comptes Rendus Chimie www.sciencedirect.com Full paper/Mémoire # One-pot Vilsmeier reagent-mediated multicomponent reaction: A direct synthesis of oxazolones and Erlenmeyer azlactones from carboxylic acids Abdulhamid Fadavi ^{a, *}, Maaroof Zarei ^b # ARTICLE INFO #### Article history: Received 3 November 2017 Accepted 4 December 2017 Available online xxxx # Keywords: Oxazol-5-ones Erlenmeyer azlactones Vilsmeier reagent Cyclodehydration One-pot synthesis ### ABSTRACT N-Acylation of glycine with carboxylic acids was carried out by using the Vilsmeier reagent. The resulting N-acyl- α -amino acids were subsequently cyclodehydrated into oxazol-5-ones via the Vilsmeier reagent. Finally, treatment of oxazol-5-ones with aldehydes in the presence of the Vilsmeier reagent delivered Erlenmeyer azlactones. By combining these steps, using the Vilsmeier reagent allowed direct one-pot conversion of carboxylic acids into oxazol-5-ones and direct one-pot conversion of carboxylic acids into Erlenmeyer azlactones in the presence of aldehydes. These Vilsmeier reagent-mediated multicomponent reactions proceeded smoothly in reasonable chemical yields at room temperature. The chemical structure of the title compounds was confirmed by spectral data. © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. # 1. Introduction Oxazol-5-ones (oxazolones) **1** and 4-arylmethylene-oxazolones (Erlenmeyer azlactones) **2** are versatile organic compounds with applications in different fields of research [1]. $$\begin{array}{cccc} O & O & O \\ &$$ Oxazolone derivatives possess important biological activities [1,2]. Some prepared oxazolones showed inhibition of tyrosinase [3] and Human NK1 receptor antagonist [4]. Also, they are used as antioxidant and anticorrosive used as versatile building blocks in synthetic organic chemistry for the synthesis of several heterocycles and biologically active molecules [6]. According to their importance, many efforts made for additives for lubricant oils [5]. In addition, oxazolones are According to their importance, many efforts made for the synthesis of oxazolones and azlactones have been reported [7]. The general method for the preparation of oxazolones involves the classical cyclization of an N-acyl- α -amino acid with acetic anhydride under reflux conditions, where N-acyl- α -amino acids are prepared separately from acyl chlorides and glycine [8]. In a pioneering work, Erlenmeyer described the synthesis of azlactone by condensation of benzaldehyde with *N*-acetylglycine in the presence of acetic anhydride and sodium acetate [9]. To avoid the acidic and harsh conditions using acetic anhydride [10], other dehydrating agents such as carbodiimides [11], ethyl chloroformate [12], and arylsulfonyl chloride [13] have been reported. Some drawbacks in these methods are multistep reactions from carboxylic acid to oxazolones, the need for low or high temperatures, lower yield of the products, harsh E-mail address: abdulhamidfadavi@yahoo.com (A. Fadavi). https://doi.org/10.1016/j.crci.2017.12.001 1631-0748/© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. Please cite this article in press as: A. Fadavi, M. Zarei, One-pot Vilsmeier reagent-mediated multicomponent reaction: A direct synthesis of oxazolones and Erlenmeyer azlactones from carboxylic acids, Comptes Rendus Chimie (2017), https://doi.org/10.1016/j.crci.2017.12.001 ^a Department of Chemistry, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran ^b Department of Chemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas 71961, Iran ^{*} Corresponding author. A. Fadavi, M. Zarei / C. R. Chimie xxx (2017) 1-5 conditions, unnecessary waste, and chromatographic separations of products. Chloromethylenedimethylammonium chloride (Vilsmeier reagent) **3** is easily prepared by the reaction of DMF and oxalyl chloride or thionyl chloride in dry dichloromethane [14]. This reagent has been identified as a formylating agent [15], a coupling reagent in the synthesis of esters [16], amides [17], acid chlorides [18], β -sultams [19], β -lactams [20], diacylhydrazines [21], 1,3,4-oxadiazoles [22], and 1,3,4-thiadiazoles [23]. To the best of our knowledge, the Vilsmeier reagent has not been used for the synthesis of oxazolones. Hence, in this article, we discussed the application of the Vilsmeier reagent for the conversion of carboxylic acid to oxazolones and Erlenmeyer azlactones. ### 2. Results and discussion # 2.1. Synthesis Hippuric acid **4a** used as a starting material was simply prepared from benzoic acid and glycine in the presence of the Vilsmeier reagent. The prepared hippuric acid **4a** was stirred with the Vilsmeier reagent in the presence of triethylamine in DMF to yield 2-phenyloxazol-5-one **5a** in 66% yield. The progress of the reaction was monitored by thinlayer chromatography (TLC) until all hippuric acid **4a** was consumed in the reaction. The reaction mixture was then quenched with water and ethyl acetate. The organic layer was washed with saturated sodium bicarbonate and dried over Na₂SO₄. After removal of the solvent and recrystallization from ethanol, 2-phenyloxazol-5-one **5a** was obtained as pale yellow crystals. To optimize the reaction conditions for the synthesis of 2-phenyloxazol-5-one **5a** from hippuric acid **4a**, various solvents and different molar amounts of the Vilsmeier reagent as well as temperature were investigated (Table 1). It was found that the yield of **5a** in chloroform was higher **Table 1** Vilsmeier reagent-mediated cyclodehydration of **4a**. | 44 | | | 5a | | | |----|-------|--------------------|-------------|-----------------------------|-----------| | | Entry | Solvent | Temperature | Vilsmeier
reagent (mmol) | Yield (%) | | | 1 | DMF | rt | 1.0 | 66 | | | 2 | CH_2Cl_2 | rt | 1.0 | 76 | | | 3 | Benzene | rt | 1.0 | 34 | | | 4 | CH ₃ CN | rt | 1.0 | 58 | | | 5 | CHCl ₃ | rt | 1.0 | 81 | | | 6 | DMSO | rt | 1.0 | 61 | | | 7 | CHCl ₃ | rt | 0.8 | 55 | | | 8 | CHCl ₃ | rt | 1.3 | 76 | | | 8 | CHCl ₃ | 0 °C | 1.0 | _a | | | 9 | CHCl ₃ | 61 °C | 1.0 | 70 | | | | | | | | ^a Trace amount of the product was observed on TLC monitoring but it was not isolated. than in other solvents. In addition, the best temperature for this reaction was room temperature giving highest yield of the desired product. As it is shown in Table 1, an equimolar amount of the Vilsmeier reagent was sufficient for completion of the reaction. Treatment of N-acyl- α -amino acids 4a–1 with the Vilsmeier reagent and triethylamine in chloroform at room temperature gave oxazol-5-ones 5a–1 with good to excellent yield after crystallization from ethanol (Scheme 1, Table 2). The structures of all compounds 5a–1 were confirmed by elemental analysis and spectroscopic methods (IR, 1 H NMR, and 13 C NMR). Analysis of the IR spectrum of oxazol-5-ones **5a–l** showed two characteristic signals at about 1650 and 1800 cm⁻¹, which were ascribed to the presence of C=N and C=O bonds, respectively. Of course, the NH, CO amide, OH, and CO carboxylic acid peaks of *N*-acyl- α -amino acids **4a–l** had vanished. Furthermore, the ¹H NMR and ¹³C NMR spectra showed characteristic CH₂, C=N, and CO peaks. Transformation of oxazol-5-ones and aldehydes to Erlenmeyer azlactones in chloroform has been previously reported [8d]. Then, oxazol-5-one **5a** was converted to Erlenmeyer azlactone **6a** in the presence of benzaldehyde and of the Vilsmeier reagent in 84% yield (Scheme 2). These results prompted us to develop an easy method for the one-pot synthesis of oxazol-5-ones and azlactones from carboxylic acids. Reaction of benzoic acid (1.0 mmol) with glycine (1.0 mmol) in the presence of the Vilsmeier reagent 3, triethylamine, and benzaldehyde (1.0 mmol) in dry chloroform at room temperature for 3 h allowed direct conversion into the crude azlactone 6a. The mixture was washed with saturated NaHCO₃ solution. Crystallization from 70% ethanol gave pure azlactone 5a as a yellow solid. In the absence of benzaldehyde, oxazol-5-one 5a was obtained. Then, using similar procedures, various pure oxazol-5-ones 5a—I and azlactones 6a—m were prepared directly from carboxylic acids (Scheme 3, Tables 2 and 3). The synthesized compounds were characterized by IR, ¹H NMR, ¹³C NMR, and elemental analysis. The method was clean and convenient giving moderate to excellent isolated yields. In addition, the byproducts (DMF and salts) could be easily removed from the reaction mixture by aqueous work up. # 3. Conclusion To sum up, we have demonstrated the effectiveness and efficiency of the Vilsmeier reagent for the synthesis of oxazol-5-ones (oxazolones) and 4-arylmethyleneoxazolones (Erlenmeyer azlactones) proceeding via the cyclization of N-acyl- α -amino acids. Ready availability, high reactivity, and low cost make the Vilsmeier reagent a versatile and useful reagent for these reactions. In addition, we have developed facile and efficient methods for the synthesis of aliphatic, (hetero)-aromatic oxazol-5-ones, and 4arylmethyleneoxazolones directly from carboxylic acids in a one-pot procedure. This methodology offers the advantage of mild reaction condition, good to excellent yield of products, and simplicity of work. Pure products were obtained by simple aqueous work up and crystallization. Please cite this article in press as: A. Fadavi, M. Zarei, One-pot Vilsmeier reagent-mediated multicomponent reaction: A direct synthesis of oxazolones and Erlenmeyer azlactones from carboxylic acids, Comptes Rendus Chimie (2017), https://doi.org/10.1016/j.crci.2017.12.001 # Download English Version: # https://daneshyari.com/en/article/6594505 Download Persian Version: https://daneshyari.com/article/6594505 <u>Daneshyari.com</u>