ARTICLE IN PRESS

C. R. Chimie xxx (2016) 1-14

Contents lists available at ScienceDirect

Comptes Rendus Chimie

www.sciencedirect.com

Full paper/Mémoire

Synthesis, structure and electrochemical behavior of new ^RPONOP ($R = {}^{t}Bu$, ${}^{i}Pr$) pincer complexes of Fe²⁺, Co²⁺, Ni²⁺, and Zn²⁺ ions

Synthèse, structure et comportement électrochimique de nouveaux complexes pinceurs des ions divalents Fe^{2+} , Co^{2+} , Ni^{2+} and Zn^{2+} avec les ligands ^RPONOP ($R = {}^{t}Bu$, ${}^{i}Pr$)

Camille Lescot, Solène Savourey, Pierre Thuéry, Guillaume Lefèvre^{**}, Jean-Claude Berthet^{***}, Thibault Cantat^{*}

NIMBE, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France

ARTICLE INFO

Article history: Received 10 April 2015 Accepted 16 July 2015 Available online xxxx

Keywords: Pincer ligand Iron Cobalt Nickel Zinc Electrochemistry Crystal structure

Mots-clés: Ligand pinceur Fer Cobalt Nockel Zinc Électrochimie Structure cristalline

ABSTRACT

The coordination chemistry of the M^{2+} ions of the first-row elements iron, cobalt, nickel and zinc was explored with the ligands ^RPONOP (2,6-(R₂PO)(C₅H₃N), R = ⁱPr and ^tBu). Syntheses and characterization of the complexes Fe(^RPONOP)Br₂, Co(^{tBu}PONOP)Cl₂, Ni(^{R-}PONOP)I₂ and Zn(^RPONOP)I₂ (R = ^tBu, ⁱPr) are reported together with the crystal structures of Fe(^RPONOP)Br₂ (R = ⁱPr and ^tBu), Co(^{tBu}PONOP)Cl₂, Co(^{iPr}PONOP)Cl(µ-Cl)CoCl₂(THF), Ni(^{iPr}PONOP)I₂, Zn(^{iPr}PONOP)I₂ and of the oxidation product Zn[^{tBu}P(=O)ONOP(=O)]I₂ resulting from the reaction with oxygen. The electrochemical behavior of the M(^{tBu}PONOP) X₂ complexes has been investigated in acetonitrile. While the nickel compound is stable, all the complexes are sensitive to dissociation of the ^RPONOP ligand or ligand scrambling in strongly coordinating media. Catalytic activity in formic acid dehydrogenation with TONs up to 1143 has been found for Ni(^{tBu}PONOP)I₂.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

La chimie de coordination des ions divalents M^{2+} des éléments de la première ligne de la classification périodique a été explorée pour le fer, le cobalt, le nickel et le zinc avec les ligands ^RPONOP (2,6-(R₂PO)(C₅H₃N), R = ⁱPr et ^tBu). Les synthèses et les caractérisations des complexes Fe(^RPONOP)Br₂, Co(^{tBu}PONOP)Cl₂, Ni(^RPONOP)I₂ et Zn(^RPONOP)I₂ (R = ^{tBu}, ⁱPr) sont présentées avec les structures cristallines des composés Fe(^RPONOP)Br₂ (R = ⁱPr et ^tBu), Co(^{tBu}PONOP)Cl₂, Co(^{iPr}PONOP)Cl(µ-Cl)CoCl₂(THF), Ni(^{iPr}PONOP)I₂, Zn(^{iPr}PONOP)I₂ et celle du dérivé Zn(^{tBu}P(=O)ONOP(=O)I₂ résultant de l'oxydation de Zn(^{iBu}PONOP)I₂ par l'oxygène de l'air. Le comportement électrochimique des complexes M(^{tBu}PONOP)X₂ a été étudié dans l'acétonitrile. À l'exception du complexe du nickel, les complexes s'avèrent

* Corresponding author.

E-mail address: thibault.cantat@cea.fr (T. Cantat).

http://dx.doi.org/10.1016/j.crci.2015.07.004

1631-0748/© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Please cite this article in press as: C. Lescot, et al., Synthesis, structure and electrochemical behavior of new ^RPONOP ($R = {}^{t}Bu$, ${}^{i}Pr$) pincer complexes of Fe²⁺, Co²⁺, Ni²⁺, and Zn²⁺ ions, Comptes Rendus Chimie (2016), http://dx.doi.org/10.1016/j.crci.2015.07.004

^{**} Corresponding author.

^{***} Corresponding author.

ARTICLE IN PRESS

C. Lescot et al. / C. R. Chimie xxx (2016) 1-14

instables et tendent à perdre leur ligand ^RPONOP ou à se réarranger dans un milieu fortement coordinant. Ni(^{rBu}PONOP)I₂ montre une activité catalytique dans la déshydrogénation de l'acide formique, avec un TON atteignant 1143.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Polydentate ligands play a crucial role in transition metal chemistry, as they increase the stability of their complexes and enable a fine control of the reactivity at the metal center through their steric and electronic properties. For these reasons, mixed hard/soft donor pincer ligands have been considerably studied for their ability to stabilize metal cations in a variety of oxidation states [1] and for their role in stoichiometric and catalytic reactions [2]. A plethora of pincer ligands, coordinated to a number of d and f transition metals, has now been reported in the literature. Recently, a series of neutral mixed hard/soft donor pincer ligands has attracted considerable attention, in particular the PNP-type $2,6-(R_2PX)(C_5H_3N)$ (X=0, CH₂, NH) ligands containing a central pyridine connected to two PR₂ fragments. Considerable work, by the groups of Milstein, Jones, Brookhart and others, has demonstrated the importance of such ligands and the non-innocent role of X in hydrogen transfer catalysis [2,3]. With the reactive X= NH_2 or CH_2 moiety replaced by an oxygen atom (X=0), the $R_2PO(py)OPR_2$ (PONOP) ligands offer the advantage of a convenient and facile synthesis, but the potential of the corresponding complexes remains quite unexplored. Indeed, only a handful of PONOP complexes have been reported and structurally characterized, mostly with noble metals of the second and third rows (Ru, Rh, Pd, Ir, and Pt) [4–9] and recently with Ni [6,9] and Co [10] for metals of the first row. Here we report the synthesis and structural characterization of a series of ^RPONOP complexes with late first row divalent metals (Fe, Co, Ni, and Zn) and their electrochemical behavior in organic solvents.

2. Results and discussion

2.1. Syntheses and crystal structures of the complexes

The ^RPONOP ligands were prepared following literature protocols by mixing the 1,6-dihydroxy pyridine hydrochloride salt in THF with di(tert-butyl)-chlorophosphine or di(isopropyl)-chlorophosphine in the presence of triethylamine and tetramethylethylenediamine [4,8,9]. The series of M(tBu PONOP)X₂ (MX₂ = FeBr₂ (**1**), CoCl₂ (**2**), Nil₂ (**4**), ZnI₂ (5)) and $M(^{iPr}PONOP)X_2$ (MX₂ = FeBr₂ (1'), NiI₂ (4'), ZnI₂ (5')) complexes was then readily synthesized by the addition of ^{tBu}PONOP or ^{iPr}PONOP to the anhydrous MX₂ halides (Scheme 1). Because of the poor solubilities of the metal halide starting materials, a polar solvent such as THF is preferred over toluene in order to avoid extended reaction time. The reaction procedure is similar for all the compounds with initial heating at 40 °C for 1 h and then stirring overnight at room temperature. All the compounds proved to be soluble in THF except $Ni(^{tBu}PONOP)I_2$ (4) which

Scheme 1. Synthesis of the $M(^{R}PONOP)X_{2}$ complexes ($R = {}^{t}Bu$ and ${}^{i}Pr$).

deposited as a dark-red solid from the crude mixture. Removal of the solvent and washings with pentane of the solid residue afforded pure M(^RPONOP)X₂ compounds with yields ranging from 77 to 83%.

All the compounds have been characterized by elemental analysis and ¹H, ³¹P and ¹³C(¹H) NMR spectra except Co(^{tBu}PONOP)Cl₂ (**2**), for which paramagnetism of the 3d⁷ Co²⁺ ion impedes any NMR observation. While the ¹H NMR signals of the 3d⁸ nickel complex **4** are relatively narrow and in the diamagnetic zone (δ 1.65 (^tBu) and 7.12 and 8.22 for the pyridine moiety), the corresponding signals for the 3d⁶ paramagnetic iron analog **1** are large and strongly shifted at δ 16.89 (^tBu) and -20.39 and 54.01 for the pyridine signals, respectively, with full width at half maximum in the range of 70–150 Hz.

In contrast to **1**, **2**, and **5**, the nickel complex **4** is almost insoluble in THF. While $[Ni(^{tBu}PONOP)CI][CI]$ is cationic in THF [9], the insolubility of **4** would suggest the formation of a similar species, e.g. $[Ni(^{tBu}PONOP)I][I]$. Formation of discrete ion pairs for **4** and **4'** would also be in agreement with the lesser coordinating properties of iodide compared to the chloride anion. Surprisingly, **4'** crystallized in the neutral form $[Ni(^{tBu}PONOP)I_2]$ (vide infra), suggesting that an equilibrium exists in solution between the cationic and neutral forms.

Crystallization of compounds **1**, **2**, **4**, and **5** was attempted by slow diffusion of pentane into a THF solution of the complex. With the ^{tBu}PONOP ligand, only the iron complex **1** and the cobalt analog **2** crystallized as large yellow and blue crystals, respectively. Changing the solid ^{tBu}PONOP with the liquid ^{iPr}PONOP ligand clearly favored crystallization and the iron and nickel compounds **1**' and **4**' were obtained under conditions similar to those giving **1** and **2** whereas the zinc complex **5**' was obtained by cooling

Please cite this article in press as: C. Lescot, et al., Synthesis, structure and electrochemical behavior of new ^RPONOP ($R = {}^{t}Bu$, ${}^{i}Pr$) pincer complexes of Fe²⁺, Co²⁺, Ni²⁺, and Zn²⁺ ions, Comptes Rendus Chimie (2016), http://dx.doi.org/10.1016/j.crci.2015.07.004

Download English Version:

https://daneshyari.com/en/article/6594550

Download Persian Version:

https://daneshyari.com/article/6594550

Daneshyari.com