Accepted Manuscript

Carbon dioxide adsorption separation from dry and humid \mbox{CO}_2/\mbox{N}_2 mixture

Rached Ben-Mansour, Naef A.A. Qasem, Mohammed A. Antar

 PII:
 S0098-1354(18)30632-X

 DOI:
 10.1016/j.compchemeng.2018.06.016

 Reference:
 CACE 6142

To appear in:

Computers and Chemical Engineering

Received date:13 January 2018Revised date:5 June 2018Accepted date:20 June 2018

Please cite this article as: Rached Ben-Mansour, Naef A.A. Qasem, Mohammed A. Antar, Carbon dioxide adsorption separation from dry and humid CO_2/N_2 mixture, *Computers and Chemical Engineering* (2018), doi: 10.1016/j.compchemeng.2018.06.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Highlights

- Experimental and numerical Adsorption separation of CO_2 from dry and humid CO_2/N_2 mixture.
- Water vapor could significantly reduce CO₂ adsorption capacity at high H₂O molar fractions.
- CO_2 uptake is fairly unaffected for low water vapor contents in the CO_2/N_2 mixtures.

Download English Version:

https://daneshyari.com/en/article/6594673

Download Persian Version:

https://daneshyari.com/article/6594673

Daneshyari.com