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a b s t r a c t 

Modifier adaptation is a real-time optimization (RTO) methodology that uses plant gradient estimates to 

correct model gradients, thereby driving the plant to optimality. However, obtaining accurate gradient es- 

timates requires costly plant experiments at each RTO iteration. In directional modifier adaptation (DMA), 

the model gradients are corrected only in a small subspace of the input space, thus requiring fewer plant 

experiments. DMA selects the input subspace offline based on the local sensitivity of the Lagrangian gra- 

dient with respect to the uncertain model parameters. Here, we propose an extension, whereby the input 

subspace is selected at each RTO iteration via global sensitivity analysis, thus making the approach more 

reactive to changes and robust to large parametric uncertainties. Simulation results performed on the 

run-to-run optimization of two different semi-batch reactors show that the proposed approach finds a 

nice balance between experimental cost and optimality. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Industrial plants target at optimizing process economics, while 

respecting operational constraints such as those on product qual- 

ity, safety, and environmental regulations. In the presence of plant- 

model mismatch and process disturbances, real-time optimization 

( RTO ) plays a pivotal role toward operating the plant optimally. 

RTO typically relies on the accuracy of the process model and/or 

the availability of plant measurements. RTO strategies differ in 

the way they exploit the available data and the model to update 

the operating point. For instance, the most common RTO strat- 

egy proceeds by first adapting the model parameters using exper- 

imental data and then optimizing the plant economics over the 

adapted model. This iterative approach is known as the two-step 

approach ( Chen and Joseph, 1987 ). The two-step approach is in- 

tuitive and has become industrial practice in many process indus- 

tries ( Naysmith and Douglas, 1995 ). However, this approach typi- 

cally converges to a sub-optimal solution in the presence of struc- 

tural plant-model mismatch ( Forbes and Marlin, 1996; Marchetti, 

2009 ). 
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An alternative RTO strategy consists in adapting the optimiza- 

tion problem directly, while keeping the model parameters at their 

nominal values. This involves the adaptation of bias terms added 

to the constraints of the optimization problem (zeroth-order cor- 

rections). This approach, which is known as constraint adaptation 

( Chachuat et al., 2008 ), has shown promising results on an ex- 

perimental solid-oxide fuel cell setup developed for industrial use 

( Bunin et al., 2012 ). In addition to these bias corrections, modifier- 

adaptation ( MA ) schemes include (first-order) gradient correction 

terms in the cost and constraint functions of the optimization 

problem ( Marchetti et al., 2009 ). MA represents an appealing so- 

lution in the presence of plant-model mismatch as it guarantees 

the satisfaction of the plant first-order Karush–Kuhn–Tucker (KKT) 

conditions upon convergence. For the implementation of MA , plant 

measurements are expected to be sufficiently rich to allow good 

estimates of the plant cost and constraint values and of their gra- 

dients. The most straightforward way of estimating gradients is via 

finite differences, which requires evaluating the plant outputs at 

several (perturbed) operating points. The required number of per- 

turbed points depends on the number of inputs and, as a con- 

sequence, the experimental cost of gradient estimation increases 

with increasing input dimension. 

In the past years, several methods have been proposed to obtain 

gradient information. In dual MA ( Marchetti et al., 2010 ), one con- 

siders an additional constraint in the RTO problem, which restricts 

the location of the next RTO inputs such that reliable gradient in- 

formation can be extracted using the current and previously vis- 

ited operating points. Dual ISOPE ( Brdy ́s and Tatjewski, 2005 ) and 
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the approach proposed by Rodger and Chachuat (2011) also make 

use of ‘duality constraints’ so as to simultaneously estimate gradi- 

ents and optimize the plant. Recently, Gao et al. (2016) proposed 

to combine a quadratic approximation used in derivative-free op- 

timization ( Conn et al., 2009 ) and MA to improve the quality of 

gradient estimates in the presence of noise. Alternatively, instead 

of estimating gradients, one can attempt to directly compute the 

first-order correction terms using an additional optimization layer 

as proposed by Navia et al. (2015) . We refer to Marchetti et al. 

(2016) and the references therein for a detailed literature overview 

on MA . 

Recently, Costello et al. (2016) proposed a MA approach that re- 

duces the burden of gradient estimation by questioning the neces- 

sity of correcting in all input directions. The approach, labeled di- 

rectional modifier adaptation ( DMA ), proposes to correct the model 

gradients only in ‘privileged’ directions that span a reduced sub- 

space of the input space. This subspace is computed once offline 

by means of a local sensitivity analysis conducted on the gradient 

of the Lagrangian function predicted by the model. The sensitivi- 

ties are evaluated with respect to variations around the nominal 

values of the model parameters. 

In this paper, we extend the concept of DMA to cover the case 

where the parametric uncertainty is not local, but belongs to a 

fairly large uncertainty set. In this case, we argue that correcting 

the gradients only in the privileged directions identified offline via 

local sensitivity analysis may result in significant sub-optimality. 

Instead, we propose here to perform a global sensitivity analysis 

using ideas derived from active subspaces ( Constantine, 2015; Russi, 

2010 ). The concept of active subspaces has emerged as a set of 

techniques for reducing the dimension of the input space. Simi- 

lar ideas are used in this paper to develop an active directional 

modifier-adaptation (ADMA) algorithm. 

The contribution of this paper is in establishing the theoreti- 

cal foundations of ADMA via the concepts derived from active sub- 

spaces. We extend our preliminary work described in Singhal et al. 

(2017) by providing a formal analysis of optimality upon conver- 

gence in ADMA . We discuss the practical aspects of ADMA and we 

demonstrate the effectiveness of the algorithm for the run-to-run 

optimization of two different semi-batch reactors. 

The paper is structured as follows. Preliminary material includ- 

ing the formulation of the optimization problem, the description 

of the MA and DMA schemes, and background elements from ac- 

tive subspace theory, are presented in Section 2 . The novel RTO 

approach that deals with large parametric uncertainty is then pro- 

posed in Section 3 . In Section 4 , two case studies dealing with 

semi-batch reactors are presented. The first case study consid- 

ers only parametric uncertainty, while the second study deals 

with structural plant-model mismatch. We conclude the paper in 

Section 5 . 

2. Preliminaries 

2.1. Problem formulation 

The plant optimization problem can be written mathematically 

as: 

min 

u 
�p (u ) := φ(u , y p (u )) (1a) 

s.t. G p,i (u ) := g i (u , y p (u )) ≤ 0 , i = 1 , . . . , n g , (1b) 

where u ∈ R 

n u is the vector of input variables, y p ∈ R 

n y are the 

measured output variables, φ: R 

n u × R 

n y → R is the cost to be 

minimized, g i : R 

n u × R 

n y → R , i = 1 , . . . , n g , are the inequality 

constraints. The solution to Problem (1) is denoted u 

� 
p . 

The main challenge in solving this optimization problem stems 

from the fact that the input-output mapping y p ( u ) is unknown. 

However, an approximate process model is assumed to be avail- 

able, which gives the input-output mapping y ( u , θ ), where θ ∈ R 

n θ

are the model parameters. Then, using the model, Problem (1) can 

be approximated as: 

min 

u 
�

(
u , θ

)
:= φ

(
u , y 

(
u , θ

))
(2a) 

s.t. G i (u , θ) := g i (u , y (u , θ)) ≤ 0 , i = 1 , . . . , n g . (2b) 

The nominal solution u 

� is found by solving Problem (2) for 

θ = θ0 , where θ0 is the vector of nominal model parameters. In the 

presence of plant-model mismatch, the model optimum u 

� may 

not be equal to the plant optimum u 

� 
p . The goal of RTO is to find 

u 

� 

p by iteratively modifying and solving Problem (2) . 

2.2. Modifier adaptation 

Modifier adaptation introduces first-order correction terms that 

are added to the cost and constraint functions predicted by the 

nominal model. At the k th RTO iteration, the next inputs are 

computed by solving the following modified optimization problem 

( Marchetti, 2009 ): 

min 

u 
�m,k (u ) := �(u , θ) + ( λ�

k ) 
T u (3a) 

s.t. G m,k (u ) := G (u , θ) + ε 

G 
k + ( λG 

k ) 
T (u − u k ) � 0 , (3b) 

where G ∈ R 

n g is the vector of constraints G i , i = 1 , . . . , n g ; ε G k 
∈ R 

n g 

is the vector of zeroth-order modifiers for the constraints; and 

λ�
k ∈ R 

n u and λG 
k ∈ R 

n u ×n g are the first-order modifiers for the cost 

and constraint functions, respectively. At the k th RTO iteration, the 

modifiers are computed as follows: 

ε 

G 
k = G p (u k ) − G (u k , θ) , (4a) 

( λ�
k ) 

T = ∇ u �p (u k ) − ∇ u �(u k , θ) , (4b) 

( λG 
k ) 

T = ∇ u G p (u k ) − ∇ u G (u k , θ) , (4c) 

where ∇ u ( · ) is the gradient of a scalar-valued function or the Jaco- 

bian of a vector-valued function with respect to u . MA guarantees 

meeting the plant KKT conditions of Problem (1) upon convergence 

( Marchetti et al., 2009 ). Gradient adaptation via first-order modi- 

fiers plays a key role in meeting the plant KKT conditions. How- 

ever, finding reliable plant gradients is a costly task as it requires 

additional plant evaluations. If, for instance, the forward finite- 

difference approach is used, then the number of plant evaluations 

at each RTO iteration increases linearly with the dimension of the 

input space. 

2.3. Directional modifier adaptation 

The dependency of MA on the knowledge of full plant gradients 

can be reduced with the help of a process model. As the model 

gradients are sensitive to model parameters, the input subspace in 

which the parametric uncertainty has the most influence on the 

solution to Problem (2) can be found via local sensitivity analysis. 

In Costello et al. (2016) , this subspace is spanned by the so-called 

‘privileged directions’ for the purpose of gradient estimation. DMA 

evaluates offline the sensitivity of the model Lagrangian gradient 

with respect to local parametric variations that are evaluated at 

the model optimum. To this end, the model Lagrangian function is 

defined as 

L (u , μ, θ) := �(u , θ) + μT G (u , θ) , (5) 

with μ ∈ R 

n g the vector of Lagrange multipliers. Then, the sensitiv- 

ity matrix A 

� ∈ R 

n u ×n θ is computed as follows: 

A 

� := ∇ u θL (u 

� , μ� , θ0 ) = 

∂ 2 L 

∂ θ ∂u 

∣∣∣
u � , μ� , θ0 

, (6) 
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