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a  b  s  t  r  a  c  t

Stochastic  model  predictive  control  (SMPC)  provides  a probabilistic  framework  for  MPC  of systems  with
stochastic  uncertainty.  A key  feature  of SMPC  is the inclusion  of  chance  constraints,  which  enables  a sys-
tematic  trade-off  between  attainable  control  performance  and  probability  of  state  constraint  violations
in  a stochastic  setting.  This  paper  presents  an  overview  of  core  concepts  in  SMPC  in relation  to  MPC
and  stochastic  optimal  control,  with  numerical  illustrations  on  a typical chemical  process.  Estimation
of  stochastic  disturbances  as  well  as  the  impact  of  estimation  quality  of stochastic  disturbances  on the
SMPC  performance  are  discussed.  Some  avenues  for future  research  in SMPC  are  suggested.
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1. Introduction

This article presents a tutorial overview of stochastic model pre-
dictive control (SMPC). After introducing the concept of stochastic
optimal control, the connections between SMPC and both stochas-
tic optimal control and MPC  are explained in order to illustrate
how receding-horizon control in a stochastic setting requires only
a minor modification to the standard formulation of MPC. In par-
ticular, the article argues that the basic ideas of MPC and classical
linear quadratic control of Gaussian systems provide the necessary
foundation for SMPC.

This section first briefly reviews MPC, then discusses a standard
formulation of stochasticity in linear systems, and finally outlines
the rest of the paper and a case study used throughout.

Notation

The identity matrix of dimension R
n×n is denoted by In.

M > 0 (M ≥ 0) denotes a positive definite (semi-definite) matrix. vk

denotes the value of a variable v at time k, with vk+i|k denoting
the value of v at future time k + i predicted from time k. pv denotes
the probability distribution of the variable v (i.e., v∼pv). Pr[A] and
E [v] denote the probability of the event A and the expected value
of the random variable v, respectively. Prk[A] and Ek[v] denote,
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respectively, the probability and expected value conditioned on the
system information available at time k.

1.1. Model predictive control

MPC, also known as receding-horizon control, is widely used
for advanced control of multivariable systems with constraints
on states and control inputs (Mayne et al., 2000; Morari and Lee,
1999). Well-established applications of MPC  include chemical pro-
cess control (Qin and Badgwell, 2003; Forbes et al., 2015), building
climate control (Oldewurtel et al., 2012; Zhang et al., 2014; Ma
et al., 2015), networked controlled systems (Camponogara et al.,
2002; Scattolini, 2009), and vehicle path following (Falcone et al.,
2007; Faulwasser et al., 2009). We  briefly review the mathematical
foundations of MPC.

Consider a linear time-invariant (LTI) system of the discrete-
time form

xk+1 = Axk + Buk (1a)

yk = Cxk, (1b)

where xk ∈ R
nx , uk ∈ R

nu , and yk ∈ R
ny denote the state, control

input, and measured output at sampling instant k, respectively;
A ∈ R

nx×nx , B ∈ R
nx×nu , and C ∈ R

ny×nx are the system matrices.
When perfect knowledge of the state xk is available, MPC

involves solving the following optimal control problem (OCP) at
every sampling time k
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min
u

JN(xk, u) (2a)

subject to xk+i+1|k = Axk+i|k + Buk+i|k (2b)

Hxk+i+1|k ≤ h (2c)

Duk+i|k ≤ d (2d)

i = 0, 1, . . .,  N − 1 (2e)

xk|k = xk, (2f)

where N is the prediction horizon and the subscript k + i|k denotes
the value of a variable at the future time k + i, predicted based on
the knowledge of system at time k. In (2c)–(2d), H ∈ R

ns×nx and
D ∈ R

ni×nu are state and input constraint matrices, respectively,
with h ∈ R

ns and d ∈ R
ni denoting the corresponding constraint

values for the ns state constraints and ni input constraints. Here,
the cost function, commonly chosen as a regularization cost for
driving the state and input to zero, is

JN(xk, u) =
N−1∑
i=0

(x�
k+i|kQxxk+i|k + u�

k+i|kRuuk+i|k) + x�
k+N|kQNxk+N|k (3)

where u:={uk|k, uk+1|k, . . .,  uk+N−1|k} is a sequence of control inputs,
and the matrices Qx ≥ 0, Ru > 0, and QN ≥ 0 are weight matrices.

Note that the cost function (3) can be modified to include a term
that penalizes the input rate of change �uk+i|k = uk+i|k − uk+i−1|k.
Because the constraints (2b)–(2d) are linear, the cost JN(xk, u) is
quadratic, and the weight matrices are positive (semi) definite, the
OCP (2) is a convex quadratic programming (QP) problem. An opti-
mization problem of this type always has a unique minimum, and
can be solved efficiently using standard techniques (Nocedal and
Wright, 2006).

The minimizer for (2) at sampling time k is the open-loop
optimal control sequence u*(xk). Since the OCP (2) is solved in a
receding-horizon manner, only the first element of the optimal con-
trol input sequence, u∗

k|k(xk), is applied to the system. Thus, at every
k the MPC  computes an implicit feedback control law uk = �N(xk),
where

�N(xk) = u∗
k|k(xk) (4)

is determined by solving (2).
In the absence of state and input constraints, the solution

to the OCP (2) takes the form of a linear feedback controller
uk+i|k = − Kixk+i|k, known as the linear quadratic regulator (LQR). The
time-varying feedback gain Ki is given by

Ki = (Ru + B�Pi+1B)
−1

B�Pi+1A. (5)

LQR is the optimal control for the linear system (1) under mild
assumptions, and results in the stable closed-loop dynamics
xk+1 = (A − BKk)xk.

For any time i, the matrix Pi = P�
i

≥ 0 in (5) is computed through
iteration of the discrete-time Riccati equation

Pi−1 = Qx + A�PiA − A�PiB(Ru + B�PiB)
−1

B�PiA (6)

backward in time, starting from PN = QN. The matrix Pi generally
converges rapidly to its steady-state value P, leading to a constant
feedback gain K after only a few iterations. At steady state, P does
not depend on the time step i. As a result, the expression (6) can be
rewritten as the discrete-time algebraic Riccati equation (DARE)

P = (A − BK)�P(A − BK)  + Qx + K�RuK,

which can be derived from (6) using the
Sherman–Morrison–Woodbury formula for matrix inversion.

When uk =− Kxk is implemented as the control law for the system
(2), the Riccati matrix P has the property that

∞∑
k=0

(x�
k Qxxk + u�

k Ruuk ) =
∞∑

k=0

x�
k (Qx + K�RuK)xk = x�

0 Px0 .

This implies that when setting QN = PN = P in (3), the terminal
cost x�

k+N|kPx
k+N|k captures the cost from k = N to k = ∞ under the

assumption that uk+i|k =− Kxk+i|k for i ≥ N. This formulation is known
as the dual-mode paradigm (Mayne et al., 2000), which refers to the
mode 0 ≤ i < N in which the inputs are free decision variables over
the finite horizon N and the mode i ≥ N where the state feedback
control law is used over the subsequent infinite horizon. The idea
of dual-mode MPC  is that as long as N is sufficiently large, xk+i|k for
all i ≥ N will be sufficiently close to the origin for the constraints
not to be active. When the constraints are inactive, the LQR law
uk+i|k =− Kxk+i|k is the optimal control. For 0 ≤ i ≤ N − 1, the inputs
uk+i|k are decision variables that minimize the cost (3) such that the
predicted states and inputs are feasible with respect to the con-
straints (2c)–(2d). Hence, setting QN = P implies that uk+i|k =− Kxk+i|k
for i ≥ N, and enables optimization over an infinite horizon.

1.2. System uncertainty

In system (1), it is assumed that the state xk evolves in a
deterministic manner and that there are no errors in the state mea-
surements yk. In practice, however, our knowledge of the system
dynamics is uncertain. The system uncertainty generally manifests
itself in terms of uncertain model structure and/or parameters,
uncertain initial conditions, unmeasured disturbances, and mea-
surement error. A common way to incorporate uncertainty into the
system description (1) is to modify the model to

xk+1 = Axk + Buk + Gwk (7a)

yk = Cxk + vk, (7b)

where wk ∈ R
nw and vk ∈ R

nv denote system disturbances and
the measurement noise, respectively, and G ∈ R

nx×nw models the
effects of wk on the system state. Here the disturbances wk can
be seen as variables that capture the combined effect of model
uncertainty and exogenous disturbances on the evolution of the
state. When the disturbances and measurement noise are described
as random variables, (7) becomes a stochastic model of the sys-
tem dynamics. That is, even though the true system (1) evolves
deterministically, our understanding of the system dynamics is
described in a probabilistic manner. Note that this concept is in
contrast to having a system that is intrinsically stochastic in that
the system naturally exhibits random behavior, for example, due
to Brownian motion. Although the stochastic optimal control meth-
ods discussed in this paper can be adopted for naturally stochastic
systems, we restrict our discussion to the problem of probabilis-
tic system uncertainty based on the stochastic system model (7).
In the remainder of the paper, both wk and vk are assumed to be
sequences of independent and identically distributed (i.i.d.) vari-
ables with known probability distributions pw and pv, respectively,
and E [wkw�

k
] = Qw , E [vkv�

k
] = Qv, and E [wkv�

k
] = 0.

When a stochastic model (7) is used to describe the dynamics of
the uncertain system, the OCP (2) must be modified to account for
the probabilistic nature of the model predictions. The cost JN(xk, u)
will become a random quantity, which must be replaced with some
statistic such as its expected value Ek[JN(xk, u)]. The conditional
expectation Ek[JN(xk, u)] relies on the measurement information
used for deducing the system state (i.e., through state estimation
in the absence of complete state measurements), the knowledge of
which is required for initializing the OCP (2) at every sampling time
k. Similarly, the state constraints must be replaced to reflect that the
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