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a b s t r a c t 

Heat exchanger network synthesis exploits excess heat by integrating process hot and cold streams and 

improves energy efficiency by reducing utility usage. Determining provably good solutions to the min- 

imum number of matches is a bottleneck of designing a heat recovery network using the sequential 

method. This subproblem is an N P -hard mixed-integer linear program exhibiting combinatorial explo- 

sion in the possible hot and cold stream configurations. We explore this challenging optimization prob- 

lem from a graph theoretic perspective and correlate it with other special optimization problems such 

as cost flow network and packing problems. In the case of a single temperature interval, we develop 

a new optimization formulation without problematic big-M parameters. We develop heuristic methods 

with performance guarantees using three approaches: (i) relaxation rounding, (ii) water filling, and (iii) 

greedy packing. Numerical results from a collection of 51 instances substantiate the strength of the meth- 

ods. 

© 2018 Published by Elsevier Ltd. 

1. Introduction 

Heat exchanger network synthesis (HENS) minimizes cost and 

improves energy recovery in chemical processes ( Baliban et al., 

2012; Biegler et al., 1997; Elia et al., 2010; Smith, 20 0 0 ). HENS 

exploits excess heat by integrating process hot and cold streams 

and improves energy efficiency by reducing utility usage ( Escobar 

and Trierweiler, 2013; Floudas and Grossmann, 1987; Furman 

and Sahinidis, 2002; Gundersen and Naess, 1988 ). Floudas et al. 

(2012) review the critical role of heat integration for energy sys- 

tems producing liquid transportation fuels ( Niziolek et al., 2015 ). 

Other important applications of HENS include: refrigeration sys- 

tems ( Shelton and Grossmann, 1986 ), batch semi-continuous pro- 

cesses ( Castro et al., 2015; Zhao et al., 1998 ) and water utilization 

systems ( Bagajewicz et al., 2002 ). 

Heat exchanger network design is a mixed-integer nonlinear 

optimization (MINLP) problem ( Ciric and Floudas, 1991; Hasan 

et al., 2010; Papalexandri and Pistikopoulos, 1994; Yee and Gross- 
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mann, 1990 ). Mistry and Misener (2016) recently showed that ex- 

pressions incorporating logarithmic mean temperature difference, 

i.e. the nonlinear nature of heat exchange, may be reformulated 

to decrease the number of nonconvex nonlinear terms in the opti- 

mization problem. But HENS remains a difficult MINLP with many 

nonconvex nonlinearities. One way to generate good HENS solu- 

tions is to use the so-called sequential method ( Furman and Sahini- 

dis, 2002 ). The sequential method decomposes the original HENS 

MINLP into three tasks: (i) minimizing utility cost, (ii) minimizing 

the number of matches, and (iii) minimizing the investment cost. 

The method optimizes the three mathematical models sequen- 

tially with: (i) a linear program (LP) ( Cerda et al., 1983; Papoulias 

and Grossmann, 1983 ), (ii) a mixed-integer linear program (MILP) 

( Cerda and Westerberg, 1983; Papoulias and Grossmann, 1983 ), 

and (iii) a nonlinear program (NLP) ( Floudas et al., 1986 ). The se- 

quential method may not return the global solution of the origi- 

nal MINLP, but solutions generated with the sequential method are 

practically useful. 

This paper investigates the minimum number of matches prob- 

lem ( Floudas, 1995 ), the computational bottleneck of the sequential 

method. The minimum number of matches problem is a strongly 

N P -hard MILP ( Furman and Sahinidis, 2001 ). Mathematical sym- 

metry in the problem structure combinatorially increases the pos- 

sible stream configurations and deteriorates the performance of ex- 

act, tree-based algorithms ( Kouyialis and Misener, 2017 ). 

Because state-of-the-art approaches cannot solve the minimum 

number of matches problem to global optimality for moderately- 
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Table 1 

Nomenclature. 

Name Description 

Cardinalities 

n Number of hot streams 

m Number of cold streams 

k Number of temperature intervals 

v Number of matches (objective value) 

Indices 

i ∈ H Hot stream 

j ∈ C Cold stream 

s, t, u ∈ T Temperature interval 

b ∈ B Bin (single temperature interval problem) 

Sets 

H, C Hot, cold streams 

T Temperature intervals 

M Set of matches (subset of H × C ) 

C i ( M ), H j ( M ) Cold, hot streams matched with i ∈ H, j ∈ C in M 

B Bins (single temperature interval problem) 

A ( M ) Set of valid quadruples ( i, s, j, t ) with respect to a set M of 

matches 

A u ( M ) Set of quadruples ( i, s, j, t ) ∈ A ( M ) with s ≤ u < t 

V H ( M ) Set of pairs ( i, s ) ∈ H × T appearing in A ( M ) (transportation 

vertices) 

V C ( M ) Set of pairs ( j, t ) ∈ C × T appearing in A ( M ) (transportation 

vertices) 

V C 
i,s 

(M) Set of pairs ( j, t ) ∈ V C ( M ) such that ( i, s, j, t ) belongs to A ( M ) 

V H 
j,t 

(M) Set of pairs ( i, s ) ∈ V H ( M ) such that ( i, s, j, t ) belongs to A ( M ) 

Parameters 

h i Total heat supplied by hot stream i ( h i = 

∑ 

s ∈ T σi,s ) 

h max Maximum heat among all hot streams ( h max = max i ∈ H { h i } ) 
c j Total heat demanded by cold stream j ( c j = 

∑ 

t∈ T δ j,t ) 

σ i, s Heat supply of hot stream i in interval s 

δj, t Heat demand of cold stream j in interval t 

�
 σ , � δ Vectors of all heat supplies, demands 

�
 σt , 
�
 δt Vectors of all heat supplies, demands in temperature 

interval t 

R t Residual heat exiting temperature interval t 

U i, j Upper bound (big-M parameter) on the heat exchanged via 

match ( i, j ) 

λi, j Fractional cost approximation of match ( i, j ) (Lagrangian 

relaxation) 
�
 λ Vector of all fractional cost approximations λi, j 

Variables 

y i, j Binary variable indicating whether i and j are matched 

q i, j, t Heat of hot stream i received by cold stream j in interval t 

q i, s, j, t Heat exported by hot stream i in s and received by cold 

stream j in t 

�
 y , � q Vectors of binary, continuous variables 

r i, s Heat residual of heat of hot stream i exiting s 

x b Binary variable indicating whether bin b is used 

w i, b Binary variable indicating whether hot stream i is placed 

in bin b 

z j, b Binary variable indicating whether cold stream j is placed 

in bin b 

Other 

N Minimum cost flow network 

G Solution graph (single temperature interval problem) 

φ( M ) Filling ratio of a set M of matches 

�
 y f , � q f Optimal fractional solution 

αi , β j Number of matches of hot stream i , cold stream j 

L i, j Heat exchanged from hot stream i to cold stream j 

I Instance of the problem 

r Remaining heat of an algorithm 

sized instances ( Chen et al., 2015b ), engineers develop experience- 

motivated heuristics ( Cerda et al., 1983; Linnhoff and Hindmarsh, 

1983 ). Linnhoff and Hindmarsh (1983) highlight the importance of 

generating good solutions quickly: a design engineer may want to 

actively interact with a good minimum number of matches solu- 

tion and consider changing the utility usage as a result of the MILP 

outcome. Furman and Sahinidis (2004) propose a collection of ap- 

proximation algorithms, i.e. heuristics with performance guaran- 

tees, for the minimum number of matches problem by exploiting 

the LP relaxation of an MILP formulation. Furman and Sahinidis 

(2004) present a unified worst-case analysis of their algorithms’ 

performance guarantees and show a non-constant approximation 

ratio scaling with the number of temperature intervals. They also 

prove a constant performance guarantee for the single temperature 

interval problem. 

The standard MILP formulations for the minimum number of 

matches contain big-M constraints, i.e. the on/off switches associ- 

ated with weak continuous relaxations of MILP. Both optimization- 

based heuristics and exact state-of-the-art methods for solving 

minimum number of matches problem are highly affected by the 

big-M parameter. Trivial methods for computing the big-M param- 

eters are typically adopted, but Gundersen et al. (1997) propose a 

tighter way of computing the big-M parameters. 

This manuscript develops new heuristics and provably efficient 

approximation algorithms for the minimum number of matches 

problem. These methods have guaranteed solution quality and ef- 

ficient run-time bounds. In the sequential method, many possible 

stream configurations are required to evaluate the minimum over- 

all cost ( Floudas, 1995 ), so a complementary contribution of this 

work is a heuristic methodology for producing multiple solutions 

efficiently. We classify the heuristics based on their algorithmic na- 

ture into three categories: (i) relaxation rounding, (ii) water filling, 

and (iii) greedy packing. 

The relaxation rounding heuristics we consider are (i) Fractional 

LP Rounding (FLPR), (ii) Lagrangian Relaxation Rounding (LRR), and 

(iii) Covering Relaxation Rounding (CRR). The water-filling heuris- 

tics are (i) Water-Filling Greedy (WFG), and (ii) Water-Filling MILP 

(WFM). Finally, the greedy packing heuristics are (i) Largest Heat 

Match LP-based (LHM-LP), (ii) Largest Heat Match Greedy (LHM), 

(iii) Largest Fraction Match (LFM), and (iv) Shortest Stream (SS). 

Major ingredients of these heuristics are adaptations of single 

temperature interval algorithms and maximum heat computations 

with match restrictions. We propose (i) a novel MILP formulation, 

and (ii) an improved greedy approximation algorithm for the sin- 

gle temperature interval problem. Furthermore, we present (i) a 

greedy algorithm computing maximum heat between two streams 

and their corresponding big-M parameter, (ii) an LP computing the 

maximum heat in a single temperature interval using a subset of 

matches, and (iii) an extended maximum heat LP using a subset of 

matches on multiple temperature intervals. 

The manuscript proceeds as follows: Section 2 formally defines 

the minimum number of matches problem and discusses mathe- 

matical models. Section 3 discusses computational complexity and 

approximation algorithms for the minimum number of matches 

problem. Section 4 focusses on the single temperature interval 

problem. Section 5 explores computing the maximum heat ex- 

changed between the streams with match restrictions. Sections 6 –

8 present our heuristics for the minimum number of matches 

problem based on: (i) relaxation rounding, (ii) water filling, and 

(iii) greedy packing, respectively, as well as new theoretical perfor- 

mance guarantees. Section 9 evaluates experimentally the heuris- 

tics and discusses numerical results. Sections 10 and 11 discuss the 

manuscript contributions and conclude the paper. 

2. Minimum number of matches for heat exchanger network 

synthesis 

This section defines the minimum number of matches problem 

and presents the standard transportation and transshipment MILP 

models. Table 1 contains the notation. 

2.1. Problem definition 

Heat exchanger network design involves a set HS of hot pro- 

cess streams to be cooled and a set CS of cold process streams to 

be heated. Each hot stream i posits an initial temperature T HS 
in ,i 
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