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a b s t r a c t 

The integration of dynamic process models in scheduling calculations has recently received significant at- 

tention as a mean to improve operational performance in increasingly dynamic markets. In this work, we 

propose a novel framework for the integration of scheduling and model predictive control (MPC), which 

is applicable to industrial size problems involving fast changing market conditions. The framework con- 

sists on identifying scheduling-relevant process variables, building low-order dynamic models to capture 

their evolution, and integrating scheduling and MPC by, (i) solving a simulation-optimization problem to 

define the optimal schedule and, (ii) tracking the schedule in closed-loop using the MPC controller. The 

efficacy of the framework is demonstrated via a case study that considers an air separation unit operating 

under real-time electricity pricing. The study shows that significant cost reductions can be achieved with 

reasonable computational times. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Globalization and extensive information exchange supported by 

new technologies have given rise to an environment with fast 

changing market conditions, which must be taken into account in 

order to achieve optimal process operation. In the process systems 

engineering community, the search for the optimal operation has 

been translated to optimizing the decision-making processes across 

the entire enterprise. The decision-making processes can be ana- 

lyzed in a hierarchical structure as presented in Fig. 1 (considering 

a process with product inventory). Traditionally, decisions made in 

upper levels of this hierarchy are communicated to lower levels, 

and each decision-making problem is (optimally) solved separately 

and independently. However, (overall) sub-optimal and infeasible 

solutions can be avoided by proper integration of different levels 

of the hierarchy ( Baldea and Harjunkoski, 2014 ). In this work, we 

focus on strategies for the integration of scheduling and control 

problems. 
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The benefits that such integration can bring are intuitive, given 

that the dynamics of a process governed by a particular con- 

trol strategy can significantly affect the behavior of scheduling 

relevant-variables, influencing, e.g., the time required for tran- 

sitions between production setpoints and the associated oper- 

ational costs. Initial efforts in the area followed the intuitive 

route of including the dynamic model of the process as an ad- 

ditional set of constraints in the scheduling problem. The re- 

sult is a mixed-integer dynamic optimization problem (MIDO), 

and its solution provides the optimal production sequence and 

optimal control moves required to implement the schedule. The 

MIDO problem is typically discretized, resulting in a Mixed In- 

teger Nonlinear Program (MINLP) using, for example, collocation 

or implicit Runge Kutta methods. This approach was proposed by 

Flores-Tlacuahuac and Grossmann (2006) , and it was extended by 

Terrazas-Moreno et al. (2007) and Zhuge and Ierapetritou (2012) . 

Alternatively, Nyström et al. (2005) proposed a decoupled model- 

ing approach which consisted in formulating the scheduling prob- 

lem (master problem) as a Mixed Integer Linear Programming 

(MILP) and the control problem (primal problem) as Dynamic Op- 

timization. The problem is solved through iterations between the 

master and primal problems. This approach was later extended to 

a multiple parallel lines application by Nyström et al. (2006) . These 
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Nomenclature 

Indices 

i Time intervals for the simulation problem 

n Time slot of the scheduling problem 

k Sample number of the MPC problem 

Sets 

I Set of time intervals 

N n Set of scheduling slots 

W Set of scheduling relevant variables 

Variables 

α Split fraction 

F i p Product flow rate at sample period i 

F 
sp,n 
p Product flow rate setpoint at sample period n 

F i 
f eed 

Feed air flow rate at sample period i 

F i 
in v ,in Inlet flow rate to the inventory at sample period i 

k PHX Split fraction in the PHX 

I p Product purity (modeled in term of impurity con- 

centration) 

L drain Liquid drain rate in the reboiler 

M 

i 
in v Inventory holdup at sample period i 

M reb Liquid level in the reboiler 

R col Fraction of vapor product sent to the condenser 

�T reboiler Temperature driving force in the reboiler 

u p Manipulated variables 

u 
sp 
p Setpoint for manipulated variables 

x p Differential states 

y p Outputs 

y 
sp 
p Setpoint for output variables 

Parameters 

F 
sp,initial 
p Initial product flow rate setpoint 

F 
sp 
p,min 

Lower bound for the product flow rate setpoint 

F 
sp 
p,max Upper bound for the product flow rate setpoint 

F̄ i Demand rate at sample period i 

M 

0 
in v Initial inventory holdup 

M 

min 
in v Minimum inventory holdup 

M 

max 
in v Maximum inventory holdup 

N Prediction horizon for MPC 

p i Electricity price at sample period i 

P f Terminal penalty matrix 

Q Output penalty matrix 

R Input penalty matrix 

s Limiting factor for changes in setpoint 

τ Scheduling time slot duration 

t n 
end 

End time for scheduling time slot n 

t n start Start time for scheduling time slot n 

T s Sample time for the MPC problem 

T m 

Scheduling horizon 

u min Lower bound for manipulated variables 

u max Upper bound for manipulated variables 

y min Lower bound for output variables 

y max Upper bound for output variables 

approaches, however, face considerable computational challenges 

associated with the use of high-fidelity representations of the pro- 

cess dynamics and the complexity, nonlinearities and discontinu- 

ities that this brings to the scheduling problem. In view of these 

difficulties, You and coworkers proposed a series of strategies to 

improve the computational efficiency when solving the integrated 

scheduling and control problem ( Chu and You, 2013a, 2013b ). 

Fig. 1. The decision-making hierarchy in an enterprise with product inventory. 

It is important to notice that, in general, issues related to the 

stability and safety of the dynamic process (a problem extensively 

studied in the control literature) have not been accounted for in 

integrated frameworks. This can be verified by analyzing the in- 

tegrated models proposed in the literature; the majority of the 

respective works only consider the dynamics of the process for 

the transition periods. In general, a constraint establishing that the 

state and control variables should achieve their steady state values 

at the end of the transition period is imposed, and an implicit as- 

sumption that the system remains at the steady state values from 

that point forward is made. Such manipulation reduces the com- 

plexity of the integrated model and allows the schedule to be op- 

timized without previous knowledge of the transition times, which 

should otherwise be obtained in an iterative procedure. However, it 

is clear from a control perspective that achieving such steady state 

values does not guarantee that the system remains stable, espe- 

cially when considering open-loop unstable steady states. Finally, 

most of the existing integrated frameworks assume there is no 

model mismatch between the dynamic model and the process, and 

the control actions are usually computed offline. Such assumption 

is typically violated in practice, and can cause instability and safety 

constraint violations when implementing the integrated scheduling 

and control solutions. 

Motivated by these issues, Zhuge and Ierapetritou (2014) pro- 

posed to integrate scheduling and model predictive control (MPC) 

by including explicit control laws in the scheduling problem, where 

control laws were derived using multi-parametric programming 

techniques. MPC would then address the control objective of guar- 

anteeing stability, robustness, safety and fast tracking, while the in- 

tegrated scheduling model accounted for economic objectives. Fur- 

thermore, Zhuge and Ierapetritou (2015) proposed an integrated 

framework that consisted of the use of two control loops for the 

online integration of scheduling and control. An integrated prob- 

lem at the outer loop generated the production schedule and the 

state references for the inner loop. The inner loop tracked state 

references using fast model predictive control, and the exact con- 

trol solution was computed online. Recently, Du et al. (2015) no- 

ticed that the use of the detailed dynamic models of the process 
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