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a b s t r a c t 

We present a new method for calculating the time-transient behavior of stochastic reaction networks. 

We first derive the set of equations for the moments of the master probability distribution. We then 

linearize these equations calculating the Jacobian matrix around the stationary probability distribution. 

In order to demonstrate the method, we present examples of stochastic reaction networks and compute 

their dynamic behavior. We find that the calculations are accurate and significantly more efficient than 

stochastic simulation algorithms based on Gillespie’s algorithms. 

© 2018 Published by Elsevier Ltd. 

1. Introduction 

Linearization techniques have been developed for over six 

decades to solve non-linear initial value problems in chemical ki- 

netics ( Aris and Amundson, 1958; Bilous and Amundson, 1955; 

Schmitz and Amundson, 1963 ). Such techniques have also been ap- 

plied to a plethora of other fields besides reaction kinetics ( Kumar 

and Sridhar, 1964; Schei, 1997; Taylor, 1982; Wittwer et al., 2004; 

Yudovich, 1989 ). 

Linearization of non-linear reaction rate equations requires 

knowledge of their steady-state solution. Using this information 

and an initial condition, linearized equations can be solved to 

compute time-dependent behaviors ( Bequette, 1991; Bilous and 

Amundson, 1956 ). 

In chemical engineering processes involving reacting systems, 

the canonical choice involves a continuous-deterministic modeling 

formalism, thereupon reaction kinetics of homogeneous systems 

are modeled with ordinary differential equations; the concentra- 

tion of molecular species is a continuous variable, and reactions 

are events occurring with a certain frequency per unit time, per 

unit volume ( Fogler, 2006 ). 

An important hypothesis underlying the choice of a continuous- 

deterministic model is that the studied system is at the thermody- 

namic limit. At this limit the size of the system and the number 

of molecules of chemical species in the system are large enough 
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for the concentration to be accurately represented with a continu- 

ously changing variable (although the number of molecules is al- 

ways discrete), and for the ensemble of individual reaction events 

to average out to the deterministic reaction rate (although each re- 

action event is a probabilistic one). 

More recently stochastic reaction models have been the focus 

of numerous studies because they describe important aspects of 

biological processes more accurately than deterministic reaction 

kinetic models ( Gillesple, 1992; Grima, 2012; Kampen, 2004 ). In 

biomolecular systems, the number of molecules of reacting species 

is often very small. Stochasticity then impacts the observed cel- 

lular phenotypes, requiring modeling formalisms that consider the 

inherent variability in biological systems ( McQuarrie, 1967 ). For ex- 

ample, there may only exist a few copies of a mRNA molecule in- 

side a cell that will react with the ribosome and produce protein. 

Modeling these translation events with ordinary differential equa- 

tions may be distinctly false. 

The prevalent techniques to model stochastic reaction networks 

have largely relied on Gillespie’s stochastic simulation algorithms 

( Ale et al., 2013; Cao et al., 2004; Gillespie, 1976; 1992; Salis and 

Kaznessis, 20 05a; 20 05b ). The SSA is an established modeling for- 

malism that accurately captures the discrete and probabilistic na- 

ture of biomolecular interactions. However, the SSA and its numer- 

ous variants suffer from significant computational inefficiencies, 

principally because each reaction event is explicitly accounted for 

in the model. The computational challenge becomes insurmount- 

able when there are system reactions with multiple, disparate time 

scales. The SSA will then spend inordinate amounts of computer 
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time, simulating fast reaction events, in order to properly sample 

slower reaction events ( Salis and Kaznessis, 2005a ). 

We and others have developed alternative methods for model- 

ing stochastic reaction networks that rely on the moments of the 

probability distribution of these networks ( Singh and Hespanha, 

2006; Smadbeck and Kaznessis, 2012; Sotiropoulos and Kaznessis, 

2011 ). Assuming the entropy of the network is maximum, we de- 

veloped a closure scheme for probability moment equations. We 

have shown that this scheme can be employed to quickly and ac- 

curately compute the steady state of non-linear reaction networks 

( Constantino and Kaznessis, 2017; Constantino et al., 2016; Smad- 

beck and Kaznessis, 2013; 2015 ). 

Based on this moment closure steady state approach, herein we 

propose a linearization method for probability moment equations 

to calculate the time-transient behavior of stochastic reaction net- 

works close to steady state. We propose that this new method 

can be used to model reaction networks away from the thermo- 

dynamic limit, including biomolecular and metabolic reaction net- 

works in biological systems. 

In the following section, we present the theoretical underpin- 

nings of the linearization method, first describing the derivation of 

moment equations. 

2. Theory 

A complete model for describing the time evolution of the 

probability distribution of a system with chemical reactions is 

the Chemical Master Equation (CME) ( Gillespie, 1992; McQuarrie, 

1967 ). For all its elegance, the CME is not often used in modeling 

reaction systems because it is not tractable for any but the sim- 

plest of reacting systems ( Singh and Hespanha, 2006 ). 

2.1. Moment equations 

An alternative method for computing probability distributions 

relies on calculating probability moments. There exist different 

types of moments, such as central, factorial, or polynomial ones, all 

equally valid for describing the probability distribution ( Gillespie, 

20 09; Kampen, 20 04; Smadbeck and Kaznessis, 2012 ). The deriva- 

tions in this document apply to any kind of probability moments. 

Let us consider a chemical reaction network with N reactants 

and products. The state of the network is described by the N - 

dimensional vector X = (X 1 , X 2 , . . . , X N ) that contains the number 

of molecules of each component (all reactants and products). If the 

functional form of the moment μi is denoted as f μi 
(e.g. f μ1 

= X 1 , 

for the first moment of a single-dimensional system) then the mo- 

ment itself is defined as follows: 

μi = 

∑ 

X 

f μi 
(X ) · P (X ; t ) (1) 

where, P (X ; t ) is the probability for the system to be at state X at 

time t. 

With no loss of information, CMEs can be transformed into 

moment equations through a Z-transform ( Smadbeck and Kaznes- 

sis, 2012 ). The resulting moment equations are a set of coupled 

differential equations. The most general form for a system with el- 

ementary reaction rates is: 

dμ

dt 
= A · μ + A 

′ · μ′ + μc (2) 

where μ is the lower-order moment vector (not including the 

zero-order moment, which is always equal to 1), μ′ is the higher- 

order moment vector, μc is a vector of constants, and t represents 

time. 

In most cases, vectors μ and μ′ have different dimensions 

( Gillespie, 2009 ). For nonlinear reaction networks, the μ′ vector 

is nonempty. It is then apparent that the lower-order moments 

depend on the higher-order ones, and the set of equations can- 

not be closed ( Smadbeck and Kaznessis, 2012 ). In 2012, we de- 

scribed a closure scheme that relies on the assumption that the 

entropy of a reacting system is maximum. The interested reader is 

referred to recent descriptions of the ZI-closure scheme where clo- 

sure scheme algorithms are detailed ( Constantino and Kaznessis, 

2017; Constantino et al., 2016 ). 

3. Calculation/linearization 

Moment equations can be linearized around the stationary 

probability distribution by computing the steady state Jacobian 

( J ss ). By carrying out a Taylor expansion of the right side of 

Eq. (2) around the steady state, we can use the following approxi- 

mation: 

∂μ

∂t 
≈ ∂μ

∂t 

∣∣∣
ss 
+ J ss ( μ − μss ) (3) 

where the subscript ss stands for steady state, i.e. μss denotes the 

stationary probability moments. When evaluated at steady state 

the time derivative is zero ( ∂μ
∂t 

∣∣∣
ss 

= 0 ). As a result, Eq. (3) is sim- 

plified to 

∂ μ

∂t 
= J ss μ (4) 

with μ = (μ − μss ) . 

Section 3.1 provides details on the calculation of steady state 

Jacobians, based on the knowledge of stationary probability mo- 

ments. 

Eq. (4) has a known analytical solution ( Gillesple, 1992 ), based 

on the eigenvalues ( λe ) and eigenvectors ( v ) of the Jacobian ma- 

trix J ss . Through an eigenvalue analysis ( Davis and Thomson, 20 0 0; 

Gillesple, 1992 ), Eq. (4) can be transformed into 

μ(t) = v exp (λe t) v −1 [ μ(0) − μss ] + μss (5) 

where t is the time that the moment vector μ is evaluated and v −1 

is the inverse of the eigenvector matrix v . 

With this method, one can calculate probability moments at 

any time, with only the knowledge of the stationary solution (i.e. 

the Jacobian matrix around the steady state) and an initial condi- 

tion ( μ(0) ) of the moments. 

3.1. Steady state Jacobian matrix 

By definition, the Jacobian matrix is given by: 

J ss = 

∂ 
[

∂μ
∂t 

]
∂μ

∣∣∣∣∣
ss 

= A + A 

′ ∂μ′ 

∂μ

∣∣∣∣
ss 

(6) 

Smadbeck and Kaznessis (2013) developed ZI-closure scheme 

method to connect lower and higher order moments with the 

Lagrange multipliers ( λm 

) of the maximum entropy distribution. 

Thus, with the use of the chain rule for partial derivatives the fol- 

lowing stands 

∂μ′ 

∂μ

∣∣∣∣
ss 

= 

∂μ′ 

∂λm 

∣∣∣∣
ss 

∂λm 

∂μ

∣∣∣∣
ss 

= 

∂μ′ 

∂λm 

∣∣∣∣
ss 

(
∂μ

∂λm 

∣∣∣∣
ss 

)−1 

(7) 

The Jacobian matrix can be then expressed ( Smadbeck and Kaznes- 

sis, 2015 ) as 

J ss = A + A 

′ ∂μ′ 

∂λm 

∣∣∣∣
ss 

(
∂μ

∂λm 

∣∣∣∣
ss 

)−1 

(8) 

In order to calculate the steady state Jacobian one needs to calcu- 

late matrices ∂μ′ 
∂λm 

∣∣∣
ss 

and 

∂μ
∂λm 

∣∣∣
ss 

. 
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