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a b s t r a c t 

The dynamics of gene regulatory networks are often modeled with the assumption of cellular homogene- 

ity. However, this assumption contradicts the plethora of experimental results in a variety of systems, 

which designates that cell populations are heterogeneous systems in the sense that properties such as 

size, shape, and DNA/RNA content are unevenly distributed amongst their individuals. In order to address 

the implications of heterogeneity, we utilize the so-called cell population balance (CPB) models. Here, 

we solve numerically multivariable CPB models to study the effect of heterogeneity on populations car- 

rying the toggle switch network, which features nonlinear behavior at the single-cell level. In order to 

answer whether this nonlinear behavior is inherited to the heterogeneous population level, we perform 

bifurcation analysis on the steady-state solutions of the CPB model. We show that bistability is present 

at the population level with the pertinent bistability region shrinking when the impact of heterogeneity 

is enhanced. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Advances that recently occurred in the fields of biotechnology, 

genomics and computational biology have supplied us with pow- 

erful techniques and methods that can shed light on the com- 

plex mechanisms taking place at the single-cell level. However, 

it is of equally great importance to understand the impact of in- 

tra and inter-cellular processes on the average population phe- 

notype. In particular, we are interested in studying the effect of 

cell population heterogeneity, which has been observed in nu- 

merous biological systems. Indicatively, we report the burst varia- 

tion of bacteriophages ( Delbruck, 1945 ), and the existence of tran- 

scriptional states of heterogeneity in sporulating cultures of Bacilus 

subtillis ( Chung and Stephanopoulos, 1995 ). Cellular heterogeneity 

has also been observed in various isogenic Escherichia coli systems 

( Elowitz et al., 2002 ), in endothelial cell surface markers ( Oh et al., 

2004 ), transcriptional states at single-cell-resolution ( Tischler and 

Surani, 2013 ) and single-cell metabolomics ( Rubakhin et al., 2013 ). 

Finally, we report recent studies showing the impact of hetero- 

geneity on drug discovery and optimal design of therapeutic strate- 

gies ( Gough et al., 2017, 2014 ). 
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Despite the experimental evidence for the importance of cell 

heterogeneity, a number of modeling approaches (e.g., Chung and 

Stephanopoulos, 1995; Fedoroff and Fontana, 2002; Sadeghpour 

et al., 2017 ) are based on the assumption that populations are ho- 

mogeneous. Despite the fact, that this assumption leads to simple 

mathematical models (systems of ordinary differential equations), 

disregarding cell heterogeneity can lead to false quantitative pre- 

dictions ( Aviziotis et al., 2015 a, 2015 b; Kavousanakis et al., 2009; 

Mantzaris, 2005; McAdams and Arkin, 1998 ). 

In this work, we adopt the modeling approach of cell popula- 

tion balance (CPB) to model the dynamics and compute the steady- 

state solution of heterogeneous isogenic populations, (all individu- 

als carry the same genetic network). In such populations, cell het- 

erogeneity originates from two main sources. The first source, the 

so-called intrinsic heterogeneity, is the result of stochastic fluctua- 

tions of regulatory molecules ( Alberts et al., 1994 ), which exist in 

small concentrations and control a network of intracellular reac- 

tions. Gene regulatory molecules are a set of DNA segments inside 

the cell that interact with each other through their RNA and pro- 

tein expression products as well as with other intracellular sub- 

stances. The type and the number of genes expressed at each mo- 

ment alongside with the intracellular reactions define the pheno- 

type of each cell. Furthermore, gene expression is a stochastic pro- 

cess as shown in Blake et al. (2003) ; Elowitz et al. (2002) leading 
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also to phenotypic variability, which originates from intracellular 

processes. 

The second source of heterogeneity is the so-called extrinsic 

heterogeneity, which is the result of the uneven distribution of the 

intracellular content -with the exception of DNA- from a mother 

cell to its daughter cells during cellular division. The uneven dis- 

tribution of mother content to the offsprings results in different 

phenotypes as a result of the different rates of the intracellular re- 

action network. Furthermore, it is not only the intracellular con- 

tent which is distributed unevenly; the regulatory molecules are 

also unevenly distributed, and the phenomenon repeats itself due 

to the process of cell cycle leading to further phenotypic variability. 

It has been shown by experimental studies ( Elowitz et al., 2002 ), 

for E. coli populations, that extrinsic heterogeneity has a more sig- 

nificant quantitative impact; in this work we focus on the extrin- 

sic heterogeneity impact on E. coli populations carrying the genetic 

toggle switch. 

In order to quantify the heterogeneity and combine it with the 

pertinent genetic network, we introduce the CPB models, which 

were developed in mid-1960s ( Eakman et al., 1966; Fredrick- 

son et al., 1967; Tsuchiya et al., 1966 ). They are partial integro- 

differential equations and are characterized from high mathemati- 

cal complexity (even with the application of model-reduction tech- 

niques ( Stamatakis, 2013 )). Analytical solutions cannot be obtained 

for the general case and the use of numerical methods is manda- 

tory ( Liou et al., 1997; Mantzaris et al., 20 01a, 20 01b, 20 01c; Zhang 

et al., 2003, 2002; Zhu et al., 2000 ). However, a common feature of 

the applied numerical methods is the assumption that the physio- 

logical state space boundaries (e.g., the boundaries of the intracel- 

lular content) are known a priori . This assumption may be valid for 

the minimum intracellular content -which we can assume that is 

equal to zero- but this does not apply when it comes to the value 

of the maximum intracellular content. In order to bypass this im- 

pediment one can apply a free boundary formulation as presented 

in Kavousanakis et al. (2009) , based on a valid assumption that the 

maximum intracellular content is a positive multiple of its average 

value. 

The mathematical formulation of the applied free boundary 

CPB model is described in Section 2 . In particular, we present a 

two-variable CPB model in order to describe the dynamics of E. 

coli cells carrying a synthetic toggle switch which has been pre- 

sented in Gardner et al. (20 0 0) . A brief description of its design 

and mathematical formulation is provided in Section 3 . A key fea- 

ture of this synthetic network is its nonlinear behavior and the 

existence of a range of extracellular inducer concentration val- 

ues - IPTG (isopropyl- β- d -thiogalactopyranoside)- with multiple 

co-existing steady-state phenotypes. In order to examine whether 

this nonlinear behavior is inherited also to the population level, 

we first study homogeneous populations using systems of ODEs 

which describe their dynamics, and the pseudo arc-length continu- 

ation algorithm ( Keller, 1977 ) to track the entire steady-state solu- 

tion space as a function of the [IPTG]. 

The study of heterogeneous populations is presented in 

Section 4 , where we utilize the pseudo arc-length method in com- 

bination with CPBs, in order to determine and quantify the impact 

of heterogeneity on the range of bistability (the interval of [IPTG] 

values with multiple solutions). We need to stress at this point, 

that the steady-state solution of multivariable CPBs is not a trivial 

numerical task, with significantly large computational and mem- 

ory requirements. In order to bypass these difficulties we resort 

to Newton-like algorithms, and in particular Broyden’s algorithm, 

( Broyden, 1965 ), which requires only an approximation of the Ja- 

cobian matrix, and not the Jacobian matrix itself (as required in 

Newton–Raphson), thus saving significant computational effort as 

compared to Newton’s method. 

In Section 5 , we present temporal and steady-state computa- 

tions for the aforementioned CPB model, which is discretized with 

the finite element method. We also present the steady-state so- 

lution space of heterogeneous populations carrying the synthetic 

toggle switch as a function of the IPTG concentration. The per- 

tinent bifurcation diagrams show that bistability is also present 

for heterogeneous cell populations, however the range is narrowed 

down as the impact of heterogeneity is enhanced. Furthermore, we 

also study the impact of other parameters on the range of bistabil- 

ity, including the parameters which quantify the asymmetry and 

sharpness of the division mechanism. Finally, in Section 6 we pro- 

vide a brief summary of the main results of this study. 

2. Cell population balance modeling 

In this work, we study a two-dimensional CPB model, which 

describes the dynamics of a heterogeneous population carrying the 

synthetic toggle switch ( Gardner et al., 20 0 0 ). Each individual of 

the evolved distribution is characterized by the values of two in- 

tracellular variables, namely x and y . In the more general case 

of a k -variable CPB model, each cell is characterized by a vec- 

tor of k intracellular content values, x ≡ ( x 1 , . . . , x k ) , the dynam- 

ics of the population are described by the following expression 

( Mantzaris, 2006 ): 

∂u ( x , t ) 

∂t 
+ ∇ x · [ R ( x ) u ( x , t ) ] + �( x ) u ( x , t ) 

= 2 

x max ∫ 
x 

�
(
x ′ 
)
P 
(
x , x ′ 

)
u 

(
x ′ , t 

)
d 

k x ′ 

−u ( x , t ) 

∫ 
�

�( x ) u ( x , t ) d 

k x , (2.1) 

where: 

� = [ 0 , x 1 ,max ] × . . . ×
[
0 , x k,max 

]
⊆ R 

k , k ∈ N , (2.2) 

and x max ≡ ( x 1 , max , . . . , x k, max ) denotes the vector with the max- 

imum intracellular content values. The number density function, 

u ( x , t ) , ( Fredrickson et al., 1967 ), expresses the number of cells 

with content x at time t divided by the total number of cells at 

this time. The boundary conditions imposed to ( 2.1 ) require that 

the population cells do not grow outside the domain, �, i.e.: 

u ( 0 , t ) = u ( x max , t ) = 0 . (2.3) 

The first term in ( 2.1 ) quantifies accumulation, and the second 

denotes the rate at which cells with intracellular content x change 

their content due to intracellular reactions, R ( x ) . The third term 

represents division, which yields cells with lower content, when 

the cell division rate is �( x ) . The first term at the right hand side 

describes the birth of cells with content, x , by cells with larger in- 

tracellular content. The factor 2 multiplies the integral to model 

the birth of two cells at the end of each division. The function, 

P ( x , x ′ ) , models the mechanism of intracellular content distribution 

amongst the two daughter cells; in effect P ( x , x ′ ) models the prob- 

ability that a mother cell with content, x’ , produces a daughter cell 

with content, x , and one of content, x’-x . Finally, the last term of 

the right hand side (dilution term) is the one forcing the solution 

to reach a steady-state; at this state, the non-normalized distribu- 

tion of cells reaches a time-invariant shape, while cells continue to 

proliferate. 

Taking into account that u ( x , t ) is the number density function 

(already normalized by the total number of cells), the following 

condition must apply: 

∫ 
�

u ( x , t ) d 

k x = 1 . (2.4) 

Eq. (2.1) incorporates single-cell operations through three key 

functions: �( x ) , R ( x ) and P ( x , x ′ ) known in the relative literature 
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