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a b s t r a c t 

This work presents an optimization scheme for maintenance and inspection scheduling of the infrastruc- 

ture system whose states are nearly impossible or prohibitively expensive to estimate or measure online. 

The suggested framework describes state transition under the observation uncertainty as Partially Ob- 

servable Markov Decision Process (POMDP) and can integrate heterogeneous scheduling jobs including 

maintenance, inspection, and sensor installation within a single model. The proposed approach performs 

survival analysis to obtain time-variant transition probabilities. A POMDP problem is then formulated via 

state augmentation. The resulting large-scale POMDP is solved by an approximate point-based solver. We 

exploit the idea of receding horizon control to the POMDP framework as a feedback rule for the online 

evaluation. Water distribution pipeline is analyzed as an illustrative example, and the results indicate 

that the proposed POMDP framework can improve the overall cost for maintenance tasks and thus the 

system’s sustainability. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

According to the report of the America’s infrastructure grades 

in 2013 ( Herrmann, 2013 ), the overall grade of the infrastructure 

was diagnosed as D+ (poor) and the required investment in infras- 

tructure upgrades and maintenance by 2020 was estimated to be 

$3.6 trillion. Infrastructure scheduling plays a critical role in en- 

suring safe operation and economic maintenance for chemical pro- 

cesses and process system peripherals. Infrastructure scheduling 

includes three major tasks: maintenance, inspection, and sensor- 

installation. Maintenance is done to improve the overall function- 

ality of the system such as grade and failure rate. Inspection is car- 

ried out to assess the current condition and gather the information 

of the system. Sensor-installation allows inspection using a device 

rather than human senses. Proper and timely installation of sen- 

sors can enhance the quality of service (QoS) of a system by struc- 

tural health monitoring (SHM) ( Flammini et al., 2010; Jawhar et al., 

2007 ). 

Infrastructure has two distinguishing characteristics which hin- 

der rational decision-making. First, it deteriorates with a low fail- 

ure rate whereas serious damage to a wide area is inevitable when 

it fails. Second, it is nearly impossible to measure or estimate the 
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system’s state in real time due to the size and complexity of the 

system, the high cost of scheduling actions, and the intrinsic un- 

certainty of non-destructive inspection methods. 

A scheduling approach based on deterioration model and op- 

timization can be a promising tool to address these two issues, 

and thus can lead to economical and sustainable operation. In the 

case of the infrastructure network, a prioritization method can be 

applied to narrow the scope of the scheduling problem into the 

single infrastructure system ( Choi et al., 2017; Memarzadeh and 

Pozzi, 2016 ). The majority of deterioration models for infrastruc- 

ture system consider uncertainties due to the lack of knowledge 

about fundamental principles and the limited amount of available 

data. Discrete-time states and actions are usually appropriate for 

stochastic optimization models. The discrete system state is often 

designated as a grade or condition of the system, and its validity 

is discussed in Madanat et al. (1995) . For this reason, the infras- 

tructure scheduling problem can be regarded as a discrete stochas- 

tic sequential decision process. An appropriate framework for this 

problem is Markov Decision Process (MDP), whose objective is to 

calculate an optimal maintenance schedule within a control hori- 

zon ( Puterman, 2014 ). 

State transition randomness has been successfully modeled in 

the MDP framework via probability matrix ( Golabi et al., 1982; 

Guignier and Madanat, 1999 ). However, observation uncertainty 

leads to suboptimal solutions to MDP. Moreover, inspection and 
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sensor-installation, which are other essential parts of the infras- 

tructure scheduling, cannot be considered in the MDP framework 

which inherently assumes the ‘fully observable state’. However, 

Partially Observable MDP (POMDP) formalism, which is a natural 

extension of MDP and involves probability of state observation, can 

tackle the problem of the uncertainty in observation and allow for 

integrating inspection scheduling and sensor-installation. 

Several studies of the infrastructure scheduling using POMDP 

model have been conducted. Small-scale problems with the num- 

ber of states less than 10 are solved with POMDP formulation 

( Ellis et al., 1995; Jiang et al., 20 0 0; Madanat and Ben-Akiva, 

1994 ). Jiang et al. (20 0 0) suggested failure criteria by comparing 

minimum resistance and maximum loading effect on the system. 

Byon and Ding (2010) solved a finite horizon POMDP problem with 

season-dependent parameters. 

The history-dependent and time-variant transition process im- 

proves the accuracy of the model because it can take account of 

maintenance records and system’s age. The time-variant transi- 

tion model can be obtained by survival analysis with the semi- 

Markov assumption ( Kleiner, 2001 ). History-dependency can be 

modeled by the state-augmentation ( Robelin and Madanat, 2007 ) 

or by the concept of periodic replacement ( Kim et al., 2016 ). In 

Papakonstantinou and Shinozuka (2014) a large-scale POMDP prob- 

lem is solved for the system having the aforementioned issues. 

Whereas the large-scale POMDP could describe more practical sys- 

tems, the previous studies could not either consider the sensor in- 

stallation or revise the resulting policy when feedback information 

is available. 

The main contribution of this paper is to suggest a POMDP 

framework for the infrastructure scheduling with the following fea- 

tures: First, sensor-installation is considered as a part of the in- 

tegrated scheduling, as an improvement to the maintenance and 

inspection-only scheduling. This can be achieved by introducing a 

binary state that indicates the status of sensor-installation. Second, 

the resulting policy derived from the POMDP is implemented in 

a receding horizon control (RHC) fashion so that newly obtained 

observations can be incorporated into the model. A step-by-step 

description of the formulation and solution procedure is also pre- 

sented. 

The remainder of this paper is organized as follows: 

Section 2 introduces the preliminaries of POMDP including defi- 

nitions, nomenclature and solution algorithms. Section 3 presents 

the formulation of infrastructure scheduling problem as a POMDP 

framework. Section 4 illustrates the water distribution pipe system 

as an example and discusses the results of infinite horizon POMDP 

and the calculation of the offline policy. Finally, discussion and 

concluding remarks are provided in Section 5 . 

2. POMDP formulation and solution algorithm 

2.1. Preliminaries 

POMDP describes a stochastic sequential decision process. It is 

an extension of MDP to situations where observation uncertainty 

exists. Mathematically, POMDP is described by a tuple < S, A, O, T, 

R , �, γ > . The nomenclature follows the most general one in the 

field of POMDP ( Shani et al., 2013 ). S = { 1 , . . . , | S|} is a set of dis- 

crete internal states. A = { 1 , . . . , | A |} is a set of actions that agent 

can take. � = { 1 , . . . , | �|} is a set of discrete observations which 

are revealed to the agent. T : S × A × S → [0, 1] is a stochastic state 

transition function, and T (s, a, s ′ ) = p(s ′ | s, a ) means the probabil- 

ity of the successor state being in s ′ when the current state is s 

and the action a is taken. R : S × A × S → R is a single stage reward 

function, when the current state is s and the successor state is s ′ 
with action a taken. O : S × A ×�→ [0, 1] is an observation proba- 

bility function. O (a, s ′ , o) = p(o| s ′ , a ) means the probability of ob- 

serving o when successor state is s ′ and action a is taken. γ ∈ [0, 

1) is the discount factor to decrease the utility of later rewards. 

To compare the solution of POMDP, the well-known MDP so- 

lution is first introduced. MDP is a special case of POMDP where 

the internal state is assumed to be fully observable. In the infinite 

horizon MDP problem, the solution is expressed as an optimal pol- 

icy which is a mapping of each state to the corresponding optimal 

action: π : S → A . The objective function or the value function is de- 

fined as the expected summation of the reward function R where 

any control policy π can achieve starting from state s 0 . 

V π (s 0 ) = E 

[ 

∞ ∑ 

t=0 

γ t R (s t , π(s t )) | π, s 0 

] 

(1) 

Eq. (2) is referred to as the Bellman equation for the infinite 

horizon discounted MDP, where R ( s, a ) is a single stage expected 

reward. 

V 

∗(s ) = max 
a ∈ A 

[ 

R (s, a ) + γ
∑ 

s ′ ∈ S 
T (s, a, s ′ ) V 

∗(s ′ ) 

] 

(2) 

R (s, a ) = 

∑ 

s ′ ∈ S 
T (s, a, s ′ ) R (s, a, s ′ ) 

The optimal value function V 

∗( s ) is the maximal expected total dis- 

counted reward. We note that in the infinite horizon formulation, 

V 

∗ is time-invariant and its uniqueness and existence are proven 

when 0 ≤γ < 1, and R ( s, a ) is bounded. Once V 

∗ is available, an 

optimal policy π ∗ can be obtained by solving for a given s using 

Eq. (2) . Value iteration and policy iteration are two well-known 

classical methods to solve the Bellman equation ( Puterman, 2014 ). 

In the POMDP framework, the internal state S cannot be ob- 

served deterministically. Instead, a belief space B is defined as a 

probability distribution over S . The complete system history tuple 

from initial time η = < S, �, A > should be known to determine b t . 

Thus a belief is expressed as: 

b = p(s | h ) , h ∈ η (3) 

Similar to MDP, the solution of the infinite horizon POMDP is ex- 

pressed as an optimal policy which maps beliefs b to optimal ac- 

tions: π : B → A . The objective function is the expected summation 

of the reward function R where the policy π starts at belief b 0 : 

V π (b 0 ) = E 

[ 

∞ ∑ 

t=0 

γ t R (b t , π(b t )) | π, b 0 

] 

(4) 

When action a and observation o are received, the belief can be 

updated to b a, o by Bayes’ rule, 

b a,o (s ′ ) = 

O (a, s ′ , o) 
p( o| b, a ) 

∑ 

s ∈ S 
T ( s, a, s ′ ) b( s ) (5) 

where the normalization constant p ( o | b, a ) is defined as 

p(o| b, a ) = 

∑ 

s ′ ∈ S 
O (a, s ′ , o) 

∑ 

s ∈ S 
T (s, a, s ′ ) b(s ) (6) 

Since beliefs actually provide sufficient statistics for history h 

( Smallwood and Sondik, 1973 ), the value function for POMDP can 

be stated as a function of b only. Moreover, since the belief b a, o 

only depends on the previous belief b using Eq. (5) , POMDP can be 

considered as an augmented MDP with continuous state. The Bell- 

man equation for POMDP can be derived by taking the additional 

expectation of Eq. (2) with respect to the belief b ( s ). We omitted s ′ 
index of b in Eq. (7) since the state dependency of b is trivial. 
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