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a b s t r a c t 

We present an improvement of existing methods for globally solving optimal experimental design (OED) 

for bounded-error estimation based on a bilevel formulation from Mukkala et al. (2017). The proposed so- 

lution method for the min–max program is based on our method for generalized semi-infinite programs 

(via restriction of the right-hand side). The algorithm employed has the advantage that it guarantees a 

global solution for the OED assuming the global solution of two subproblems. To obtain a feasible solu- 

tion only the lower-level problem has to be solved globally. In case of a local solution of the upper-level 

problem, the solution is still feasible though it is an upper bound of the global solution. The min–max 

method for OED is illustrated with four examples: two simple chemical reactions, BET-adsorption and a 

reformulated predator-prey system. The benefits of global methods are shown along with the limitations 

of state-of-the-art global solvers. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Models are ubiquitously used throughout all fields of science 

and engineering. For example in process systems engineering, in 

model-based process and product synthesis and design, models 

are used to find the optimal process configuration or the optimal 

working fluid leading to minimal investment and/or operating ex- 

penses ( Mechleri et al., 2017; Schilling et al., 2017 ). Similarly, in 

process planning, scheduling, and control, models are employed in 

order to find the process input leading to the optimal production 

schedule or to the desired process operation with respect to a cer- 

tain objective ( Grüne and Pannek, 2011; Pattison et al., 2017; Rawl- 

ings and Mayne, 2009 ). Due to the complexity of real-life systems, 

obtaining reliable models is a difficult task to be addressed dur- 

ing model development and validation processes ( Franceschini and 

Macchietto, 2008; Marquardt, 2005 ), which consists of three major 

steps: experimental data collection, specification of various model 

candidates and data-model comparison. In order to select the most 

promising model and to obtain precise parameter values, model 

discrimination and parameter estimation methods are applied. A 

final validated model is furnished at the end of the model building 

process. 
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Models usually include parameters that need to be estimated 

before they can be used for further purposes. This is done by 

fitting the model predictions to experimental data, i.e., via pa- 

rameter estimation. Two different categories of parameter estima- 

tion methods can be distinguished: statistical parameter estimation 

( Aster et al., 2013 ), often based on maximum likelihood methods, 

or bounded-error parameter estimation methods ( Belforte et al., 

1990; Milanese and Vicino, 1991 ), also termed set-membership or 

guaranteed parameter estimation ( Kieffer and Walter, 2011; Paulen 

et al., 2015 ). In the former approach a point in the parameter space 

is estimated by selecting the most probable parameter value based 

on the experimental statistical error distribution. A confidence re- 

gion shows how the measurement error distribution propagates 

into the parameter space. In contrast, in the bounded-error ap- 

proach, the experimental error is given by attributing upper and 

lower bounds to the errors for every measurement point without 

making further assumptions on the statistical distribution. In other 

words, the only assumption made on the measurement errors is 

that they are bounded. In the context of bounded-error estimation, 

a parameter set is estimated that is consistent with the measure- 

ments and their error bounds, i.e., all model predictions from the 

estimated parameter set lie in a set defined by the measurements 

and their error bounds. The set of all consistent parameter values 

is called the feasible parameter set. 

It is clear that independent of the parameter estimation 

method, the estimated parameters are known only within a given 

uncertainty, due to the experimental measurement errors. Uncer- 

tainties resulting from model structure inaccuracies will not be 
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considered in this article. The parameter uncertainties can be in- 

fluenced by the experimental conditions, e.g., the initial concentra- 

tion of a reactant in a chemical reaction and measurement errors. 

In order to ensure the model reliability, these uncertainties have 

to be as small as possible. Thus, the question arises how to per- 

form an experiment such that the uncertainties of the parameters 

are minimal, i.e., the parameter precision is maximal. This ques- 

tion can be answered by the methods termed optimal experimen- 

tal design (OED) for parameter precision ( Atkinson, 2011; Pronzato, 

2008; Pronzato and Walter, 1990 ). 

Following the parameter estimation classifications above, two 

respective approaches for OED exist: statistical OED ( Atkinson, 

2011; Franceschini and Macchietto, 2008; Pronzato, 2008 ) and 

bounded-error OED ( Pronzato and Walter, 1990 ). The former ap- 

proach corresponds to the statistical parameter estimation meth- 

ods, where the size of the confidence region is a measure for the 

uncertainty of the parameters. Hence, the goal of statistical OED 

is to find the experimental conditions under which the confidence 

region is as small as possible. In OED for bounded-error estimation, 

the uncertainty in the measurements is considered only by the er- 

ror bounds as is done in bounded-error parameter estimation. The 

size of the feasible parameter set is used as a measure for the pa- 

rameter uncertainty. It is particularly advantageous in cases where 

no statistical assumption can be made on the measurement errors, 

e.g., if experimental measurement data is rare, as in biological sys- 

tems, so that collecting sufficient data for proving the statistical 

assumptions on the measurement data is not possible ( Milanese 

and Vicino, 1991; Walter and Piet-Lahanier, 1990 ). 

Little literature is available on bounded-error OED despite 

the fact that it offers some advantages over the statistical OED. 

Norton (1987) , Belforte et al. (1984, 1987) , and Pronzato and Wal- 

ter (1990) give an overview of OED for guaranteed parameter esti- 

mation. Borchers and Findeisen (2011) presented an OED for guar- 

anteed parameter estimation for differential systems that are lin- 

ear in the parameters. Hasenauer et al. (2010) and Marvel and 

Williams (2012) chose the optimal conditions from a given discrete 

set of conditions. Recently, Gottu Mukkula and Paulen (2016a) gave 

a rigorous and general method of OED for guaranteed parameter 

estimation neither restricted to linear models nor to discrete sets 

of conditions. It is based on bilevel optimization techniques, which 

determine the optimal experimental conditions for general nonlin- 

ear models. However, in their work, an optimization method was 

used which can not generally guarantee finding a globally optimal 

solution. To our best knowledge, there is no work that is generally 

applicable in the context of OED for bounded-error parameter es- 

timation and can guarantee a globally optimal solution. For better 

understanding of the proposed method, a short review on bilevel 

and semi-infinite programing will be presented later on. 

In this work, a bounded-error OED method is presented based 

on the work of Gottu Mukkula and Paulen (2016a, 2017) . The 

bilevel optimization problem as proposed in these articles is recast 

as a min–max program and solved globally via an adaptation of 

an algorithm for generalized semi-infinite programs. The method 

is used for designing experiments for four test problems: a sim- 

ple second-order reaction, a consecutive first-order reaction, BET- 

adsorption and a simplified prey-predator model. 

2. Optimal experimental design for bounded-error estimation 

Process systems are often described using dynamic mod- 

els, such as ordinary differential equations (ODE) or differential- 

algebraic equations (DAE), or using static (steady state) models. In 

this work, the focus is on systems that can be written analytically 

as an input-output relationship: 

y = g ( v , p ) , (1) 

where y are the system outputs of dimension n y , p the system pa- 

rameters of dimension n p , and v are the manipulated variables of 

dimension n v consisting of the system’s discretized control inputs 

u and/or initial values of the systems states x 0 . If the system is de- 

scribed using an ODE or DAE model, the system outputs y can be 

obtained via the numerical solution of the given dynamic system 

( Gear and Petzold, 1984 ), Ascher and Petzold (1998) . In this case, 

global optimization dynamic solvers have to be used ( Chachuat 

et al., 2006; Mitsos et al., 2009 ), which require substantial more 

effort. Global solution methods of dynamic systems are still limited 

to small systems; thus herein global solvers for algebraic systems 

are used and, therefore, only dynamic models with an explicit so- 

lution are considered in the following case studies. 

As seen from Eq. (1) , to accurately describe the behavior of the 

system and predict its outputs, the system parameters p need to be 

specified. Assuming that the model Eq. (1) correctly describes the 

system, i.e., the model is structurally correct, then the model accu- 

racy depends on the parameter uncertainties. Increasing the model 

accuracy via parameter precision with the least experimental ef- 

fort is the domain of optimal experimental design. In the following 

no assumptions on the parameter and measurement error distribu- 

tions are made except that the parameters are bounded and mea- 

surement errors are bounded between ηL (lower error bound) and 

ηU (upper error bound), i.e., the measurement error η lies between 

[ ηL , ηU ]. 

The following OED formulation is part of an overall model vali- 

dation cycle ( Franceschini and Macchietto, 2008; Marquardt, 2005 ). 

In general the starting point of the cycle is (i) initial experiments, 

followed by (ii) obtaining measurement data for the relevant sys- 

tem states, (iii) conducting parameter estimation and model refine- 

ment if need be, (iv) doing optimal experimental design and finally 

(v) carrying out new experiments, which closes the model valida- 

tion cycle. 

2.1. Problem formulation 

The OED problem for bounded-error estimation utilizes a 

worst-case formulation, i.e., the largest possible parameter set that 

is still consistent with the model inequality constraints is mini- 

mized. In this formulation it is assumed that all possible manip- 

ulated variables v can be used for determining the optimal exper- 

imental design. The following formulation, with different notation, 

is taken from Gottu Mukkula and Paulen (2016a, 2016b) and Gottu 

Mukkula and Paulen (2017) : 

�∗ = �( v ∗, p 

∗) = min 

v ∈ V 
max 

p L,i ∈ P 
p U,i ∈ P 

n p ∑ 

i 

(p U,i 
i 

− p L,i 
i 

) (2) 

s.t. 

2 ηL ≤ g ( v , ̂  p ) − g ( v , p 

j,i ) 

2 ηU ≥ g ( v , ̂  p ) − g ( v , p 

j,i ) 

}
∀ j ∈ { U, L } , i ∈ { 1 , . . . , n p } (3) 

with p 

L,i = (p L,i 
1 

, . . . , p L,i n p ) 
T and p 

U,i = (p U,i 
1 

, . . . , p U,i 
n p ) 

T with i = 

1 . . . n p . P and V are a subset of real numbers of dimension n p and 

n v , respectively. The functions g correspond to the system outputs 

(see Eq. (1) ), whereas, g ( v , ̂  p ) are calculated using nominal param- 

eters ˆ p , which are known (or estimated) a priori . The total number 

of optimization variables is 2 n 2 p + n v and total number of inequal- 

ity constraints is 2(2 n y n p ). An optimal solution is denoted by v ∗

and p 

∗. A trivial solution that always satisfies the above inequality 

constraints is p 

j,i = 

ˆ p . 

The idea behind this OED formulation is to find the experi- 

mental conditions, v , that would result in the smallest feasible 

parameter set that is consistent with the measurement errors, ηL 
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