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a b s t r a c t 

Simulation is an important tool to evaluate many systems, but it often requires detailed knowledge of 

each specific system and a long time to generate useful results and insights. A large portion of the re- 

quired time stems from the need to define operational rules and build valid models that represent them 

properly. To shorten this model construction time, a learning-agent -based model is proposed. This tech- 

nique is recommended for cases where optimal policies are not known or hard and costly to unequivo- 

cally determine, as it enables the simulation agents to learn good policies “by themselves”. A model is 

built with this technique and a representative case study of oil industry value chain simulation is pre- 

sented as a proof of concept. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Simulation is an important tool to evaluate many systems, but 

it often requires detailed knowledge of each specific system and 

a long time to generate useful results and insights. It is necessary 

to define operational rules and build models that represent them 

properly. These models need to be verified and validated; usually 

on a case-by-case basis. Decision makers, nevertheless, may not 

wait for simulation results if they take too long to be produced. 

In this paper, a novel model based on learning-agents is pro- 

posed to simulate various oil industry value chains. The model: 

1. is able to represent arbitrary scopes of oil industry value 

chains: from single intra-refinery logistics to multi-echelon sup- 

ply systems with different transportation modes. 

2. requires only physical and market properties of the elements as 

input; there are no system parameters that require calibration 

or expert input. 

3. captures the effects of interaction among the elements without 

the need to specify complex interaction rules explicitly. 

4. considers peculiarities of the oil industry, such as preparation 

times of tanks. 

The main goal is to help define the impact of investments in 

infrastructure and resources by answering questions such as “how 

much storage capacity is necessary?”, “what impact does adding a 

ship to the fleet produces?”, and “does increasing a pipeline flow- 

rate really improve lead times?”. 
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The model is described under the agent-based modeling and 

simulation (ABMS) paradigm and is comprised of interactive and 

adaptive agents capable of representing components that feature 

in the systems of interest. This ABMS representation aims to be 

more useful than other simulation paradigms by making the real 

world representation more faithful through elements which are 

more or less in a one-to-one correspondence with the real systems 

( Macal, 2016 ). This helps making technical explanations easier and 

more convincing ( van Dam et al., 2009 ). 

The goal of the model is to help with resource planning for 

integrated oil value chains. This means taking into consideration 

the mutual effects of supply chain echelons and transport modes. 

Oil industry value chains are usually segmented for study, how- 

ever, and ignore these effects or only consider them through prox- 

ies, such as capacity restrictions or other calibrated input param- 

eters. One common segmentation is to consider only one mode 

of transportation. For instance, some authors consider various as- 

pects of maritime oil transportation ( Al-Khayyal and Hwang, 2007; 

Al-Yakoob and Sherali, 2012; Bao et al., 2013; Batra, 1980; Cerdá

et al., 2015; Chen and Moan, 2004; Chen, 2014; Cheng and Du- 

ran, 2004; Christiansen et al., 2013; Du et al., 2011; Feng et al., 

2015; Fuller et al., 2013; Hennig et al., 2012; Iakovou, 2001; Jetlund 

and Karimi, 2004; Korsvik et al., 2011; Lin et al., 2003; Mouret 

et al., 2008; Nishi and Izuno, 2014; Özelkan et al., 2008; Reddy 

et al., 2004; Shen et al., 2011; Shyshou et al., 2010; Siddiqui and 

Verma, 2015 ) or road oil transportation ( Braimakis et al., 2014 ). 

Pipelines are mostly associated with the oil industry, but are of- 

ten studied independently ( Banaszewski et al., 2013; Chen et al., 

2014; de Souza Filho et al., 2013; Iamashita et al., 2005; Limoeiro 

et al., 2010; 2008; Lopes et al., 2012; Oliveira et al., 2016; Shen 

et al., 2011; Wu et al., 2016 ). 
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A large range of techniques are employed in the study 

of the transportation modes. Taking the previously men- 

tioned papers, mathematical programming is employed by 

Al-Khayyal and Hwang (2007) ; Al-Yakoob and Sherali (2012) ; 

Cerdá et al. (2015) ; Christiansen et al. (2013) ; Du et al. (2011) ; 

Hennig et al. (2012) ; Iakovou (2001) ; Jetlund and Karimi (2004) ; 

Lin et al. (2003) ; Lopes et al. (2012) ; Mouret et al. (2008) ; 

Oliveira et al. (2016) ; Özelkan et al. (2008) ; Shen et al. (2011) ; 

Siddiqui and Verma (2015) ; Yüzgeç et al. (2010) . Heuris- 

tics are used by Banaszewski et al. (2013) ; Chen (2014) ; 

Chen et al. (2014) ; de Souza Filho et al. (2013) ; Fuller et al. (2013) ; 

Iamashita et al. (2005) ; Korsvik et al. (2011) ; Nishi and 

Izuno (2014) ; Reddy et al. (2004) ; Shen et al. (2011) ; 

Wu et al. (2016) . Finally, simulation is applied by Batra (1980) ; 

Braimakis et al. (2014) ; Chen and Moan (2004) ; Cheng and 

Duran (2004) ; Feng et al. (2015) ; Limoeiro et al. (2010, 2008) ; 

Shyshou et al. (2010) and is nearly ubiquitous in planning stud- 

ies. Mathematical programming and heuristics are more closely 

associated with operational tools. 

When multiple modes are covered, such as in 

MirHassani (2008) , supply plans are overviews that aggregate 

operations over time subject to capacity restrictions. Defining the 

capacity restrictions is not always straightforward, however, and 

may disregard mutual effects. For instance: a pipeline may be 

unable to reach its monthly expected capacity, derived from its 

flow-rate, because ship deliveries upstream are often late and 

starve it. 

Agent-based approaches have been used for general-purpose 

supply chains ( Swaminathan et al., 1998 ). The model presented in 

that paper, however, requires a specialist to define and calibrate 

input parameters such as inventory levels and lead times. Depend- 

ing on the model’s sensitivity to these parameters, the simulation’s 

output may be excessively reliant on the specialist’s opinion. 

Gjerdrum et al. (2001) simulate the performance of supply 

chains with optimal production scheduling, but also rely on pre- 

defined reorder point and quantity. 

An agent-based framework that is less reliant on expert input 

is presented in Julka et al. (2002a,b) . However, it covers a single 

refinery, whose process is very detailed, but represents other ele- 

ments through parameters and forecasts. 

A simulation-based optimization approach that employs ma- 

chine learning is presented in Mortazavi et al. (2015) . An optimal 

ordering policy for a 4-echelon linear supply chain is defined by 

simulating the system while agents test policies and identify the 

best. 

None of the previously detailed papers ( Gjerdrum et al., 2001; 

Julka et al., 2002a,b; Mortazavi et al., 2015; Swaminathan et al., 

1998 ) tries to help determine the necessary infrastructure of the 

system directly. This is more relevant than ordering policies in oil 

industry integrated value chains because the product flow is not 

only pulled by demand, but also pushed by production, since oil 

production is continuous and, in almost every case, extremely in- 

elastic in relation to demand fluctuations. This justifies tools, such 

as the proposed model, to help define storage and transport capac- 

ity, as they are responsible for absorbing the fluctuations. 

Pitty et al. (2008) present a dynamic model of a refinery’s inte- 

grated supply chain that match the current goal, but still relies on 

the user to define policies and decision-making algorithms. 

Sha and Srinivasan (2016) deal with resource sizing in a specific 

chemical industry case. Policies are also left to the user to experi- 

ment and choose. 

The proposed model will be mainly described in terms of its 

elements, which are the agents and the environment in which 

they interact. Some agents follow prescribed behaviors and fall 

within the definition of agents of Interactive ABMS according 

to ( Macal, 2016 ), which defines them as agents which are au- 

tonomous (i.e. can produce appropriate behaviors in view of the 

model condition) and interact with other agents and with the en- 

vironment. 

Nevertheless, the behavior of interactive agents need to be de- 

fined a priori for many conditions and situations. For some agents, 

this is straightforward and does not vary from scenario to scenario. 

In such a case, policies known to be optimal should be employed. 

In other cases, it may be necessary to specify the behavior for each 

individual case study, which requires new, time-consuming trials, 

verification and validation. In order to minimize this effort, the 

definition of model agents that will be valid for all cases of interest 

is proposed. In order to achieve that, some agents are defined as 

adaptive agents, which can learn good behavior policies during the 

simulation . This is achieved through the application of a machine 

learning algorithm to the simulation model, namely a modified R- 

Learning technique adapted from Sutton and Barto (1998) . 

The following sections will describe the oil industry value chain 

as considered in this paper, the simulation and learning techniques 

applied, the elements that are the building blocks for the model, 

and a brief, representative case study. 

2. Oil industry value chain 

Oil is the main international commodity ( Hamacher and Fer- 

reira Filho, 2015 ) and represented, in 2014, 31.3% of primary en- 

ergy world supply ( International Energy Agency, 2016 ). Crude oil, 

however, must be transported and converted into a set of deriva- 

tive products with a broad range of applications. This is done by 

a value chain that delivers oil, its derivatives and other associated 

products to their demand locations with adequate quality. Volumes 

are large, valuable and essential to almost all other economic ac- 

tivities ( Fernandes et al., 2010 ), which underlines the importance 

of analyzing the value chain. Especially when there are changes in 

the production environment. 

The scope of interest in the oil industry value chain, as far as 

this paper is concerned, starts where deposits are explored and 

finishes where products are delivered to consumers. This scope in- 

cludes storage and transportation of many products and also trans- 

formations of these products. Fig. 2.1 shows a schematic example 

of one such value chain depicting off-shore and on-shore produc- 

tion, ship trade, supply and refining, and distribution. Ships, trucks 

and pipelines are used to move products and tanks store them. 

The broadest scope of interest in this paper covers the pro- 

cess from crude oil input through to product output. Between 

these, products are stored, transformed and transported; possibly 

in many stages. Different scopes can be represented following this 

pattern of input, stages of storage, transformation and transporta- 

tion, and output. If the scope is a single refinery, for instance, the 

input may be the distillery production and the output, the delivery 

of final products to wholesale distributors, with product transfer 

and mixing in between. If the scope covers from crude oil produc- 

tion to retailing activities, the input may correspond to the wells 

and the output, the delivery of products to consumers, with many 

stages of storing and transferring between distant locations. 

In order to model oil value chains, it is necessary to identify the 

basic elements that represent the input and output (I/O) operations 

and the storage, transformation and transportation, stages. This is 

presented in the remainder of this section. 

2.1. Products 

Products are crude oil, derivatives, biofuels and anything else 

that is moved through the system. When stored, products need 

time to be mixed, decant contaminants and be quality-checked. 

This time is part of a product’s storage cycle (See Fig. 2.2 ). 
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