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ABSTRACT

The emphasis currently placed on enterprise-wide decision making and optimization has led to an
increased need for methods of integrating nonlinear process dynamics and control information in
scheduling calculations. The inevitable high dimensionality and nonlinearity of first-principles dynamic
process models makes incorporating them in scheduling calculations challenging. In this work, we
describe a general framework for deriving data-driven surrogate models of the closed-loop process
dynamics. Focusing on Hammerstein-Wiener and finite step response (FSR) model forms, we show that
these models can be (exactly) linearized and embedded in production scheduling calculations. The result-
ing scheduling problems are mixed-integer linear programs with a special structure, which we exploit in
anovel and efficient solution strategy. A polymerization reactor case study is utilized to demonstrate the
merits of this method. Our framework compares favorably to existing approaches that embed dynamics

Hammerstein-Wiener models
Finite step response models
Lagrangian relaxation

in scheduling calculations, showing considerable reductions in computational effort.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Competitive pressure from global market forces has placed a
heightened emphasis on information exchange, coordination, and
integration of all decision-making layers of the chemical supply
chain. Significant developments in this area, supported by advances
in computer hardware, data exchange, storage, and optimization
algorithms, have already led to substantial economic benefits for
chemical operations (Grossmann, 2005). This coordination often
extends to inclusion of power grid and power supply networks
such as distributed energy systems (Diangelakis and Pistikopoulos,
2017) into the operation and control of chemical systems.

Two essential layers in the decision-making hierarchy of a
chemical enterprise are production scheduling and process con-
trol. The interface between scheduling and control represents, in
effect, an interaction between business-driven decisions (schedul-
ing) with situation- and safety-driven decisions (control) (Baldea
and Harjunkoski, 2014). Integrating these activities is therefore key
in maximizing operational profits by meeting demand and ensur-
ing that production targets (i.e., the setpoints transmitted to the
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control system) are met safely in the presence of disturbances
and operational uncertainties. Integrating scheduling and control
decisions has been shown to improve operations for several indus-
trial entities, including, polymer and metal production, wastewater
treatment, air separation, and energy storage systems (Engell and
Harjunkoski, 2012; Touretzky and Baldea, 2014; Touretzky et al.,
2016).

Integrating scheduling and control becomes particularly impor-
tant when a chemical plant operates in fast-changing markets (e.g.,
markets with real-time electricity pricing). In order to operate more
profitably under such circumstances, the plant must be able to
quickly change production rates or product grades, taking advan-
tage of excess production capacity and product storage facilities
when available. This is reflected in fast and frequent changes in
scheduled production targets, often over time intervals shorter
than the (closed-loop) time constant of the process. As a result, the
process may permanently operate in a transient mode (as opposed
to being predominantly at or close to a steady state). Under these
circumstances, it is crucial that the scheduling calculations account
explicitly for the dynamics of the process and the performance of its
control system, such that the aforementioned scheduled transitions
are feasible and economically optimal (Baldea and Harjunkoski,
2014).

Any approach for integrating scheduling and control must com-
bine the long scheduling time horizon with the frequent execution
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Sets
Sets
i scheduling time slot
j dynamics time slot
J dynamics time slot
g product grade
k piecewise linear breakpoints
m Lagrangian relaxation iteration

N;

Continuous variables

t time

tc cycle time

ti length of scheduling time slot i

tg production time of each product

tgi production time of each product in slot i
Pg amount of product g produced

£ steady state production time

tl.m’”S transition time in each slot

& ending time for slot i

£ starting time for slot i

ejj error

U; scale-bridging model input

h; Hammerstein block output

Xij state variable

Vij state-space output

wij scale-bridging model output

\7v,j vector of scheduling-relevant variables
\71/31" vector of storage-relevant variables

Aijk special ordered sets of type 2 variable
Sgij storage holdup

t;? time spent in storage by product g in slot i
ﬂgj"“t flow into/out of storage of product g
RIE;; reverse-integrated error

Vim complicating constraint violation
Integer variables

Zgi binary variable defining production schedule
by binary variable defining RIE

Kijk special ordered sets of type 1 variable

Parameters and coefficients

number of scheduling time slots

maximum allotted time per scheduling slot
number of dynamics time slots

length of each dynamics time slot

dominant system time constant

settling time

timescale conversion factor

demand of product g for each i and j

production rate of product g

associated operating costs for product g over time
large number used in big-M linearization

value of the piecewise linear function at breakpoint
k

breakpoint k of piecewise linear function

RIE tolerance

Lagrangian relaxation (LR) termination tolerance
Lagrange multiplier

positive parameter for Lagrangian multiplier calcu-
lation

finite step response (FSR) model parameter

of the control system, thus accounting for both (longer term)
economic performance and (short term, real-time) safety and
stability requirements. The multiple time-scale nature of this
problem results in stiff models that are computationally intensive
(Baldea and Harjunkoski, 2014). Furthermore, first-principles
dynamic process models are almost invariably nonlinear and
high-dimensional (Wang and Shan, 2007). Together, these features
represent a considerable challenge to the effective integration of
scheduling and control, including solving the resulting problems
in a practical amount of time.

Motivated by the above, in this work, we propose a novel
computationally-efficient scheduling formulation which integrates
scheduling and process dynamics/control information.

The key contributions of this paper are:

¢ a general framework for developing (exact) linearizations of
low-order, data-driven representations of the closed-loop pro-
cess dynamics (introduced in our previous work by Pattison
et al., 2016), based on commonly-employed model classes, such
as Hammerstein-Wiener (HW) and finite step response/finite
impulse response (FSR/FIR) models.

a production scheduling formulation for continuous processes,
incorporating these models. Importantly, this scheduling prob-
lem is formulated as a mixed-integer linear program (MILP), and
can be solved using powerful solvers currently available.

a Lagrangian relaxation (LR) scheme for increased computational
efficiency in solving the aforementioned scheduling problem.

A polymerization case study is included to demonstrate the pro-
posed approach.

The article is organized as follows: we begin with a review
of the relevant literature concerning the integration of produc-
tion scheduling and process control. The next section contains an
overview of scheduling techniques and a presentation of the model
classes (HW and FSR) considered. This review is followed by meth-
ods for linearization of the selected models. From here, the model
dimensions are reduced using their unique structural properties,
and the MILP scheduling problem is given with a computationally-
efficient LR strategy. Following the theoretical content, a case study
is presented on optimal scheduling in a polymerization reactor.

2. Literature review

When presented with the need to account for process
dynamics, conventional scheduling problem formulations typically
circumvent computational efficiency issues by capturing dynamic
information in terms of estimated transition times between prod-
ucts in a set product wheel, and/or constraints concerning the
maximum rate of change for, e.g.,, production rate transitions
(Zhang and Grossmann, 2016; Maravelias, 2012). However, these
techniques inherently assume the process reaches steady-state
prior to set-point changes, and that it operates (mostly) at steady
state. These premises are no longer valid when set-point changes
occur at frequencies comparable to or higher than the dominant
time constant in the process, and may therefore result in dynami-
cally infeasible transition sequences (Pattison et al., 2016; Chu and
You, 2012). Further, transition time estimates and transition rate
constraints are often chosen to be very conservative (to account
for safety and equipment limitations), typically resulting in a sub-
optimal solution. An evolution of these basic concepts consists of
separating a production time slot into two sub-intervals, transi-
tion from the previous slot and steady-state operation, estimating
transition dynamics or calculating them offline by enumerating all
possible pairwise switches (transitions) (Nystrom et al., 2005; Tong
et al., 2015). While this is relatively manageable for systems with
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