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a  b  s  t  r  a  c  t

In  this  work,  we address  the  problem  of handling  plant-model  mismatch  by  designing  a  subspace  identifi-
cation  based  MPC  framework  that includes  model  monitoring  and  closed-loop  identification  components.
In  contrast  to  performance  monitoring  based  approaches,  the  validity  of  the  underlying  model  is moni-
tored  by  proposing  two  indexes  that  compare  model  predictions  with  measured  past  output.  In  the  event
that the  model  monitoring  threshold  is  breached,  a new  model  is  identified  using  an  adapted  closed-loop
subspace  identification  method.  To  retain  the  knowledge  of  the nominal  system  dynamics,  the  proposed
approach  uses  the  past  training  data  and  current  input,  output  and  set-point  as  the  training  data  for
re-identification.  A model  validity  mechanism  then  checks  if  the  new  model  predictions  are  better  than
the  existing  model,  and  if they are then  the  new  model  is  utilized  within  the  MPC.  The  effectiveness  of
the  proposed  method  is  illustrated  through  simulations  on  a  nonlinear  polymerization  reactor.

©  2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The operation of chemical plants faces numerous challenges
such as inherent nonlinearity, complex variable interactions and
process constraints. The most common control method that can
handle these challenges is model predictive control (MPC). In sev-
eral industrial applications of MPC, a linear model is used, in part
due to the simplicity of developing linear models and in part due to
the computational ease with using linear models. In order to handle
the resultant plant-model mismatch, robust MPCs and offset-free
MPC  approaches have been developed.

In robust MPC  approaches, the control action is computed
to handle the worst case effect of the uncertainty (Rawlings
and Mayne, 2009; Mayne et al., 2006). These include Lyapunov-
based MPC  which enables explicit characterization of the region
from where stability of the closed loop system under MPC  con-
troller is achievable in the presence of constraints and uncertainty
(Mahmood and Mhaskar, 2014). In another approach, the so-
called offset-free MPC, the nominal model is integrated with
augmented disturbance states to eliminate offset in set-point track-
ing (Pannocchia and Rawlings, 2003; Wallace et al., 2016).

While these approaches are often able to eliminate uncertainty
at steady state operation, the closed-loop performance certainly
stands to improve if a better model is utilized in the control design.
To determine if the closed-loop system is behaving as expected,
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existing approaches have focused on the area of control perfor-
mance monitoring. In this direction, numerous MPC performance
assessment methods are proposed to monitor the closed-loop per-
formance by comparing the controller with a benchmark (Huang
and Shah, 2012; Shah et al., 2002; Chilin et al., 2012). Most of these
methods focus on tuning of the controller parameters to remedy the
performance degradation. In model predictive approaches, where
the control action is more directly dependent on the underlying
model, there exists the necessity of explicitly monitoring model
validity.

There exist some results on MPC  with re-identification (IMPC)
where model validity is accounted for by requiring excitation con-
straints to ensure that the model parameters remain identifiable
(Genceli and Nikolaou, 1996). In this approach, identification is
performed at every time step. Furthermore, the approach requires
finding the right trade-off between the inevitable performance
deterioration (due to excitation conditions) and the possibility of
loss of model validity. In Potts et al. (2014) MPC  Relevant Iden-
tification (MRI) was  extended to Enhanced Multi-step Prediction
Error Method (EMPEM). In Heirung et al. (2012) single input single
output IMPC was extended to improve performance of the output
regulation by not disturbing the plant when the model is deemed
to have an acceptable precision. Acceptable precision is quanti-
fied through bounds on the variance of parameter estimates and
parameter convergence rate in the MPC  cost function.

In particular, in this method, autoregressive models with
exogenous inputs are used and recursive weighted least-squares
algorithm is utilized to estimate model parameters. In order to
solve the trade-off between control performance and persistence
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of excitation, in a recent contribution (Patwardhan and Goapluni,
2014; Bustos et al., 2016) maximizing the MPC  objective function
is used instead of minimization to maximize signal variance and
address the feasibility and stability of MPC  with re-identification.
In another direction, in Badwe et al. (2009), plant-model mismatch
is detected by partial correlation analysis in order to determine
the correlation between model residual of each output and each
manipulated variable with effect of disturbance and other manipu-
lated variables removed. This correlation may  be significant in the
presence of plant-model mismatch. In Badwe et al. (2010) model-
plant mismatch is quantified by comparison of actual and achieved
control quality. Note that in theses studies it is assumed that suf-
ficient set-point excitation is available in order to calculate the
plant-model mismatch. In the proposed approach, the set point
excitation is not necessary for the monitoring aspect. Furthermore,
in these approaches, the original training data is not retained in
the new model identification, and these methods are designed to
address situations where the system is changed significantly and
previous data are not at all representative of the plant in question.
In situations where plant model mismatch arises due to change in
operating condition (with the possibility of reverting back to the
nominal plant operation), it becomes useful to merge old and new
plant data in the re-identification step.

Motivated by the above considerations, in this work we  address
the problem of plant model mismatch by developing a model mon-
itoring and closed-loop re-identification based MPC design. The
rest of the manuscript is organized as follows: First, the general
mathematical description for the systems considered in this work,
and a representative formulation for linear model predictive con-
trol are presented. Then the proposed approach for closed-loop
re-identification of plant is explained. The efficacy of the proposed
method is illustrated through formulations and implementations
for a nonlinear polymerization continuous stirred-tank reactor
(CSTR) with input rate of change constraints and measurement
noise. Finally, concluding remarks are presented.

2. Preliminaries

In this section, a brief description of the general class of pro-
cesses that are considered in this study is provided. Then, the
orthogonal projection based subspace identification and a repre-
sentative MPC  formulation is presented.

2.1. Problem statement

Consider a general multi-input multi-output (MIMO) control-
lable system, with y ∈ R

ny denoting the measured outputs, and
u ∈ R

nu denoting the vector of constrained control (manipulated)
input variables, taking values in a nonempty convex subset U ⊂ R

nu ,
where U = {u ∈ R

nu | umin ≤ u ≤ umax},  umin ∈ R
nu and umax ∈ R

nu

denote the lower and upper bounds of the input variables. In
keeping with the discrete implementation of MPC, u is piecewise
constant and defined over an arbitrary sampling instance k as:

u(t) = u(k), k�t  ≤ t < (k + 1)�t

where �t  is the sampling time and xk and yk denote state and
output at the kth sample time. We  consider the case where the
MPC  is implemented based on a linear (identified) model, identified
using subspace identification techniques, and address the problem
of monitoring model quality online, and triggering re-identification
as appropriate, to maintain model validity and closed-loop perfor-
mance.

2.1.1. Subspace identification
In this section the conventional state space subspace identifica-

tion method is reviewed (Van Overschee and De Moor, 1994; Huang
and Kadali, 2008; Zhao and Qin, 2014). In the subspace identifica-
tion approach, the goal is to determine the system matrices for a
discrete linear time invariant model of the following form:

xk+1 = Axk + Buk + wk (1)

yk = Cxk + Duk + vk (2)

where x ∈ R
nx denotes the vector of state variables, y ∈ R

ny

denotes the vector of measured outputs, w ∈ R
nx and v ∈ R

ny are
zero mean, white vectors of process noise and measurement noise
with the following covariance matrices:

E

[(
wi

vj

)(
wT

i
vT

j

)]
=
(

Q S

ST R

)
ıij (3)

where Q ∈ R
nx×nx , S ∈ R

nx×ny and R ∈ R
ny×ny are covariance

matrices, and, ıij is the Kronecker delta function. To identify the
system matrices, Hankel matrices are first constructed by stacking
the process variables as follows:

Up = U1|i =

⎡
⎢⎢⎢⎢⎣

u1 u2 . . . uj

u2 u3 . . . uj+1

. . . . . . . . . . . .

ui ui+1 . . . ui+j−1

⎤
⎥⎥⎥⎥⎦ (4)

Uf = Ui+1|2i =

⎡
⎢⎢⎢⎢⎣

ui+1 ui+2 . . . ui+j

ui+2 ui+3 . . . ui+j+1

. . . . . . . . . . . .

u2i u2i+1 . . . u2i+j−1

⎤
⎥⎥⎥⎥⎦ (5)

where Up and Uf denote the past and future input Hankel matrices.
i is a user-specified parameter that limits the order of the system
(n) (which in itself is a user-specified parameter). Similar block-
Hankel matrices are made for output, process and measurement
noises Yp, Yf , Vp, Vf ∈ R

iny×j and Wp, Wf ∈ R
inx×j are defined in the

similar way. The state sequences are defined as follows:

Xp =
[

x1 x2 . . . xj

]
(6)

Xf =
[

xi+1 xi+2 . . . xi+j

]
(7)

furthermore with:

�p =
[

Yp

Up

]
(8)

�f =
[

Yf

Uf

]
(9)

The orthogonal projection of row space of matrix A onto row
space of matrix B, (A/B) is defined as:

A

B
= AB†B (10)

where the superscript †  stands for pseudo-inverse. By recursive
substitution into the state space model Eqs. (1) and (2), it is straight-
forward to show:

Yf = �iXf + �d
i Uf + �s

i Wf + Vf (11)

Yp = �iXp + �d
i Up + �s

i Wp + Vp (12)

Xf = AiXp + �d
i Up + �s

i Wp (13)
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