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a  b  s  t  r  a  c  t

The  study  of  techniques  for qualitative  trend  analysis  (QTA)  has  been  a popular  approach  to  address
challenges  in  fault  diagnosis  of  engineered  processes.  Such  challenges  include  the  lack of  reliable  extrap-
olation  of  available  models  and lack  of  representative  data  describing  previously  unseen  circumstances.
Many  of these  challenges  appear  in  biological  systems  even  when  normal  operation  can  be  assumed.  It is
for this  reason  that  QTA  techniques  have  also  been  proposed  for the purpose  of  fault  detection,  automa-
tion,  and  dynamic  modeling.  In this  work,  we  adopt  a shape-constrained  spline  function  method  for  the
purpose  of unknown  input  estimation.  Thanks  to data  collected  at laboratory-scale  in a biological  reactor
for urine  nitrification,  this  novel  approach  has  been  demonstrated  successfully  for  the first  time.

©  2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Routine execution of on-line process data analysis is a challeng-
ing task for many processes. The use of models to extract valuable
information from the available data is often known as soft-sensing
and several such methods for have been developed. Widely-
known methods include the Kalman filter and its extensions (e.g.,
Romanenko and Castro, 2004; Kravaris et al., 2013; Prakash et al.,
2014). These techniques provide a systematic approach to the con-
struction of such soft-sensors on the basis of dynamic process
models. Factors affecting the success include the completeness of
available process understanding, whether or not measured vari-
ables include or describe the key process states comprehensively,
and whether the process undergoes important changes over time.
To obtain a useful model, two modeling approaches are distin-
guished. The first consists of white-box modeling and is based on
models which reflect the mechanistic understanding of the process.
Successful application of soft-sensors based on white-box mod-
els requires completeness, accuracy, and precision of the applied
model. If this is not met, systematic deviations, i.e. bias, should be
expected between the extracted estimates and their true values.

Abbreviations: DO, dissolved oxygen; LTI, linear time-invariant; MHE, moving
horizon estimation; OUR, oxygen uptake rate; SCS, shape-constrained splines; QTA,
qualitative trend analysis.
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When a reliable white-box model is not available, one may  choose
to take the black-box route. In this case, one uses historical data to
empirically define the relationships between (i) data that is avail-
able cheaply and reliably, and (ii) information that is difficult to
obtain directly. Unfortunately, many black-box models (e.g., neural
nets, regression trees, support vector machines) lack transparency.
As a result, such models may  not be trusted to provide informa-
tion for safety- or quality-critical decisions (e.g., Liu, 2007; Wang
et al., 2010). In addition, black-box models often suffer from large
estimation errors when extrapolated. Choosing between white-box
and black-box approaches often entails a trade-off between these
aspects. Quite naturally, several authors have proposed a mixed
approach, i.e. grey-box modeling, to represent the process mech-
anistically in as much as possible while representing the lesser
known parts of the process as a black-box model.

In a number of situations, one may  simultaneously lack detailed
process understanding as well as sufficient data to properly define
any of the traditional models described above. This is true for
many processes and has led to the development and application
of coarse-grained qualitative modeling and simulation techniques
(Venkatasubramanian et al., 2003). Such methods are deliberately
imprecise which leads to predictions that can be trusted (relia-
bility) despite large uncertainties. Despite this imprecision, this
still enables causal reasoning and decision-making (e.g., Kuipers,
1989; Maurya et al., 2003; Bredeweg et al., 2009; Kansou and
Bredeweg, 2014). In the process engineering literature, the qual-
itative approach has been advocated mainly for the purpose of
fault diagnosis and is primarily implemented in the form of qual-

http://dx.doi.org/10.1016/j.compchemeng.2017.04.011
0098-1354/© 2017 Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.compchemeng.2017.04.011
dx.doi.org/10.1016/j.compchemeng.2017.04.011
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:kris.villez@eawag.ch
dx.doi.org/10.1016/j.compchemeng.2017.04.011


Please cite this article in press as: Thürlimann, C.M., Villez, K., Input estimation as a qualitative trend analysis problem. Computers and
Chemical Engineering (2017), http://dx.doi.org/10.1016/j.compchemeng.2017.04.011

ARTICLE IN PRESSG Model
CACE-5785; No. of Pages 10

2 C.M. Thürlimann, K. Villez / Computers and Chemical Engineering xxx (2017) xxx–xxx

itative trend analysis (QTA, Bakshi and Stephanopoulos, 1994;
Rengaswamy and Venkatasubramanian, 1995; Dash et al., 2004;
Charbonnier et al., 2005; Gamero et al., 2006, 2014; Charbonnier
and Gentil, 2007; Maurya et al., 2010; Villez et al., 2012, 2013).
The main motivation is that both process understanding and data
describing the dynamics of processes subject to rare events are typ-
ically extremely limited. The same can often be said even for normal
conditions for complex biological processes. When so, qualitative
approaches also become valuable outside of the fault diagnosis
niche, e.g., for process data mining (Stephanopoulos et al., 1997;
Villez et al., 2007). More recent work has pushed the applica-
tion boundary even further by enabling fault detection (Villez and
Habermacher, 2016), image analysis (Derlon et al., 2017), model
structure identification (Mašić et al., 2017), data reconciliation
(Srinivasan et al., 2017), and process automation (Villez et al., 2008;
Thürlimann et al., 2015) on the basis of the QTA philosophy.

Existing methods for QTA are useful to describe the qualitative
features (e.g., maxima, minima, inflection points) of a data series.
In contrast, we  provide a new approach to QTA which describes
the qualitative features of a process input signal which cannot be
measured directly. To this end, the process itself is represented by
a piece-wise linear time-invariant (LTI) model. The analyzed mea-
surement data series is assumed to be univariate, which is typical
in the QTA literature apart from a few exceptions (e.g., Flehmig
and Marquardt, 2006, 2008). The unknown input signal is rep-
resented as a shape constrained spline function. Estimating the
parameters of this input signal, i.e. the spline coefficients, by fit-
ting the complete model to process data forms the focus of this
study.

The method is applied for estimation of the oxygen uptake rate
in an intermittently fed stirred tank reactor for urine nitrification
(Udert and Wächter, 2012; Fumasoli et al., 2016). This process
has been developed as part of a system to recover resources, in
this case a fertilizer, from source-separated wastewater streams.
In the urine nitrification process, the oxygen uptake rate (OUR)
reflects the respiration rate of the ammonia oxidizing bacteria and
the nitrite oxidizing bacteria in the process. One aims to achieve
a low respiration rate at the end of each cycle, i.e. right before
new untreated urine is fed to the reactor. Estimates of the OUR
can thus be used to maximize the efficiency of the process. This
is very similar to conventional aerobic sequencing batch reactors
for wastewater treatment (e.g., Yoong et al., 2000). Estimates of
the OUR are also essential for wastewater characterization (e.g.,
Spanjers and Vanrolleghem, 1995; Spérandio and Etienne, 2000;
Choubert et al., 2013), model identification (e.g., Vanrolleghem
and Spanjers, 1998; Petersen et al., 2001; Ferrai et al., 2010), and
automation (e.g., Spanjers et al., 1996; Yoong et al., 2000; Gernaey
et al., 2001). Most typically, one obtains the OUR at infrequent time
points by fitting a linear line to a short series of dissolved oxygen
concentration measurements obtained during an unaerated phase.
The underlying idea is that the oxygen measurement series are
described well by a linear trend, whose slope reflects the respi-
ration rate in the selected time window. This approach means that
the OUR is not available continuously and that nonlinear effects
of aeration and sensor dynamics are deliberately ignored. With
the proposed method, these assumptions are not necessary and
the OUR is available as a continuous process input estimate. In
addition, the method allows estimating the kinetic parameters of
the aeration system and the sensor simultaneously, thus provid-
ing additional information regarding the state of the components
of the monitored system. We  demonstrate the method with data
obtained in a single batch cycle and describe the opportunities that
lie ahead.

Table 1
Symbol definitions.

Symbol Description

� Feasible set for �
˝  Feasible set for ˇ
ˇ  Spline function coefficients
ık Input noise at knot k
�i Measurement error at sample i
�ı Input noise standard deviation
�� Measurement error standard deviation
�,  �c , �y Time constants (for concentration, for measurement)
�  Transitions
D Degree of the spline function
E Number of episodes
I  Total number of samples
K Number of spline knots
S  Number of process states
S  Matrix describing the shape constraints
T Number of transitions
i  Measurement sample index
k  Spline index
at Spline basis function evaluated at t
ct Convoluted spline basis function evaluated at t
cDO Dissolved oxygen (state)
b, b Left-side interval bounds
b̄, b̄  Right-side interval bounds
d derivative index
e  episode index
f Rate of change
g  Measurement gains
j  (hyper-)rectangular set
rOUR oxygen uptake rate (OUR)
s0 Initial state vector
s State vector
t,  ti Time (at sample i)
u, u Known binary input
v(d)

0 Initial values for the unknown process input signal
v, v(d) Unknown process input (dth derivative)
w  Integrand
y Measurement
yDO Dissolved oxygen (noise-free measurement)
ỹDO Dissolved oxygen measurement

2. Materials and methods

All symbol definitions required in this text are given in Table 1.

2.1. Basic model

Data-generating model – Theory.  In this work, we  aim to describe
measurement time series of finite length with the following gener-
ative model:

ṡ = f t(s, u, v) (1)

ỹi = gTs(ti) + �i (2)

�i∼N(0,  ��) (3)

with s = s(t), u = u(t), v = v(t).
The above model is a continuous-time state-space model com-

posed of a set of ordinary differential equations which generates
noisy measurements (ỹi) at distinct sampling times (ti, i = 1, . . .,  I).
We further assume that (i) the ordinary differential equations are
piece-wise LTI in the S state variables (s) and the uncontrolled input
(v(t)), and (ii) that the controlled inputs (u(t)) are piece-wise con-
stant. In what follows, the parameters of the piece-wise linear LTI
system are given as a vector �.

The univariate input (v(t)) is assumed to be described well by a
signal consisting of K piece-wise polynomial segments of degree D.
Each kth polynomial starts at time tk and ends at time tk+1 (t1 = 0,
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