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a  b  s  t  r  a  c  t

We  present  a novel  design  of  experiments  (DOE)  approach  to  incorporate  model  identification  into  opti-
mal  experimental  designs  based  on a postulated  model  superstructure  and  an  associated  relaxation
strategy.  We  show  that  an  adaptive  online  design  of experiments  allows  for  the  accurate  estimation  of
the parameters  of a  domain-restricted  model,  as well  as  the  model  structure  and  domain  on  which  that
model  is  valid.  We  further  show  that  previous  attempts  at combining  model  identification  and  parameter
estimation  are  a special  case  of this  framework  (when  the objective  function  is formulated  in terms  of
the  trace  of  the  Fisher  information  matrix),  and thus  the proposed  formulation  provides  the  option  to  use
alternate  or  more  complex  objective  functions.  The  efficacy  of the  proposed  framework  is  shown  through
two  case  studies:  a  batch  reactor  with  Arrhenius-type  reactions  and  a carbon  dioxide  adsorption  system.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

High-fidelity, accurate models are central to process systems
engineering and are indispensable for activities such as process
design, simulation, and optimization. These models can be built
based on physical, chemical, and/or biological laws (first-principles
models) or using system identification techniques (empirical mod-
els).

The structure of the model and the values of the model parame-
ters are typically determined and verified through an experimental
process that has two main goals: (i) model identification, i.e., estab-
lishing the most appropriate functional form of the model and (ii)
parameter estimation,  i.e., obtaining the values of the model param-
eters for the chosen functional form. Collecting the data required to
build and validate a model can be costly in terms of both resources
and time. In addition, resources must be dedicated to testing the
model outside of training data range to determine the limits of
the model’s validity domain. Experimental campaigns must there-
fore be carefully designed to maximize information gained, while
minimizing cost (Franceschini and Macchietto, 2008).
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The first attempts at optimizing design of experiments (DOE)
were geared towards probing the connection between system
inputs (factors) and outputs (responses) (Fisher, 1960). This
approach is well suited for constructing “black-box” models, and
such techniques typically aim to select the combination of factors
to be tested and their values, which maximize information on the
input-output relationships. The main class of DOE  techniques of this
type is factorial methods, which are straight-forward to implement
and easily-interpreted; however, factorial designs are not well-
suited to handle experiments that are dynamic, in which outputs
and inputs are both allowed to vary with time, and/or experiments
that contain a large number of input variables. Model-based DOE
methods, on the other hand, attempt to exploit knowledge of the
underlying mathematical model of the system in establishing the
experimental program. Model-based DOE techniques have broad
applicability to both static and dynamic models, whether linear or
nonlinear and consist of: (i) using model equations to predict the
information content of the experiment and (ii) using optimization
techniques to determine the experimental conditions that maxi-
mize (a measure of) this information content.

In this work, we propose a novel framework for simultaneous
model identification and parameter estimation via an adaptive
design of experiments. Focusing on constructing models for
dynamic systems, we  use a model superstructure aggregating
a set of dynamic modes that can be selectively activated via a
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corresponding set of binary variables. We  utilize the superstruc-
ture to identify domain-restricted models comprising of a subset
of these dynamic modes and the conditions under which the
restricted models are valid. We  rely on existing methodologies
for parameter estimation DOE based on the Fisher information
matrix (Asprey and Macchietto, 2000, 2002; Franceschini and
Macchietto, 2008), and propose a strategy for online adaptation
of the experiments, including varying in time the factors, the
corresponding bounds, as well as the bounds on the responses.

The novelty of our contribution consists of:

• A method to include domain-restricted model identification into
design of experiments optimization by using a model superstruc-
ture and including corresponding relaxed binary variables into
the DOE objective function (Section 3.2).
• A framework for an online, adaptive experimental design explo-

iting the corresponding mixed-integer (MINLP) formulation of
the combined model identification/parameter estimation prob-
lem (Sections 3.1 and 3.3).
• Incorporating a bisection algorithm during online, adaptive

experimental designs to identify the domain on which a domain-
restricted model is valid (Section 3.4).

We show that current DOE formulations for simultaneous model
identification and parameter estimation that weigh and sum the
respective, separate objective functions are a special case of our
proposed framework for domain-restricted models. Furthermore,
we show the benefits of maximizing the determinant of the infor-
mation matrix in our new formulation through two case studies: a
reaction system with an undesirable side reaction and an adsorp-
tion system.

We  dedicate this paper to Professor Rafiqul Gani; his work on
mixture property estimation for process and product design has
been an inspiration in our research and a strong motivation for the
model identification and parameter estimation developments in
this manuscript.

2. Background

2.1. Class of systems considered

We  consider systems that are represented by (systems of) differ-
ential and algebraic equations (DAEs), for which the “true” dynamic
behavior takes the general form:

f(ẋ(t), x(t), u(t), ω, �, t) = 0

ŷ(t) = h(x(t))

x ∈ Dx, u ∈ Du

(1)

where x(t) and u(t) are respectively the vector of state variables and
the vector of time-varying controls or input factors, ω is a vector of
constant (time-invariant) controls or inputs, � is a vector of model
parameters, and ŷ(t) is a vector of measured response variables that
are functions of the state variables, x(t).

Mathematical models of such systems explain and predict sys-
temic behavior based on the input factors and controls within their
respective domains, Dx and Du. Practically speaking, models are
often abridged, excluding and/or replacing some variables present
in the true physical system, resulting in the general form:

f̄( ˙̄x(t), x̄(t), u(t), ω, �̄,  t) = 0

ŷ(t) = h̄(x̄(t))

x̄ ∈ D̄x, u ∈ Du

(2)

where x̄ is the vector of predicted states, f̄ is the abridged model,
and �̄ is the vector of parameters in the abridged model. Further,

the domain of an abridged model may  be restricted to a subdomain,
which we term a domain of validity, of the full input factor and
control domains (D̄

r
x ⊆ D̄x and Dr

u ⊆ Du). These restrictions may  be
motivated mathematically, e.g. to allow the use of a simpler model,
and/or practically, e.g. to avoid undesirable phenomena during the
experimental campaign or during system operation. Restricting the
domain allows the modeler to ignore some undesirable or difficult-
to-model dynamics; however, such domain-restricted models can
only make accurate predictions in limited regions of the input and
state space.

A domain-restricted model for the general system (1) can simi-
larly be written in a general form:

f̄
r
( ˙̄x(t), x̄(t), u(t), ω, �̄,  t) = 0

ŷ(t) = h̄(x̄(t))

x̄ ∈ D̄
r
x, u ∈ Dr

u

D̄
r
x ⊆ D̄x, Dr

u ⊆ Du

(3)

where the predicted state variables x̄(t) and input factors u(t) are
constrained to a subset (Dr = D̄

r
x × Dr

u - the domain of validity)
of the full domain D = D̄x × Du. The function f̄

r
may  be a further

abridged or simplified version of the unrestricted model f̄ that
excludes dynamic modes present in D but irrelevant in Dr. More
specifically, the unrestricted model f̄ can be thought of as cap-
turing systemic behavior through a set of component functions,
or dynamic modes, while the restricted model f̄

r
is a set (often

a subset) of dynamic modes that can be used to make accurate
predictions of the system behavior in a smaller, restricted domain
Dr⊂ D.

Simple Example
As an illustrative example, we consider approximating a non-

linear, input-affine model ẋ = ˛(x) + ˇ(x)u with a linear model
ẋ = ax + bu.  Specifically, we  assume a physical process f that is accu-
rately modeled by a nonlinear first-order function f̄  with initial
condition x(0) = 0 and steady-state gain �̄3 described by:

˛(x) = − x

�̄1x2 + �̄2
, ˇ(x) = �̄3

�̄1x2 + �̄2
(4)

which fits in the general DAE form (1), with:

f̄ = ẋ + x

g(x)
− �̄3

g(x)
u = 0 (5)

g(x) = �̄1x2 + �̄2

where the state variable x and input variable u are in domains
Dx = Du = [0, ∞). To reduce mathematical complexity, we can choose
to approximate the system with an abridged linear first-order
mathematical model of the form:

a = − 1

�̄r
1

, b = �̄r
2

�̄r
1

(6)

f̄ r = ẋ + x

�̄r
1

− �̄r
2u

�̄r
1

= 0

While the linear model f̄ r does not fully capture the dynamics of
the nonlinear model f̄ , it can conceivably make accurate predictions
over a limited range of the state and input variables x and u. The
goal is then to find parameter values �̄r

1 and �̄r
2 and the domain over

which f̄ r can be used to model f̄ accurately. We  assume the system
is modeled accurately with the parameter values �̄1 = 0.1, �̄2 = 2,
and �̄3 = 1. Intuitively, we  can see that the linear approximation
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