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a  b  s  t  r  a  c  t

A  critical  aspect  of  developing  Bayesian  state  estimators  for hybrid  systems,  that  involve  a combination  of
continuous  and  discrete  state  variables,  is  to have  a reasonably  accurate  characterization  of  the  stochastic
disturbances  affecting  their dynamics.  Recently,  Bavdekar  et al. (2011)  have  proposed  a maximum  likeli-
hood  (ML)  based  framework  for estimation  of  the  noise  covariance  matrices  from  operating  input–output
data  when  an  EKF  is used  for state  estimation.  In this  work,  the ML  framework  is extended  to  estimation
of  the  noise  covariance  matrices  associated  with  autonomous  hybrid  systems,  and,  to  a  wider  class  of
recursive  Bayesian  filters.  Under  the  assumption  that the innovations  generated  by  an  estimator  form  a
white  noise  sequence,  the  proposed  ML  framework  computes  the  noise  covariance  matrices  such  that
they  maximize  the  log-likelihood  function  of the  estimator  innovations.  The  efficacy  of  the proposed
scheme  is  demonstrated  through  the  simulation  and  experimental  studies  on  the  benchmark  three-tank
system.

©  2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Dynamic systems that involve continuous state variables, dis-
crete states and/or logical states or parameters, are common in
process industries. For example, in a fermentation reaction, the rate
of growth of the organism is limited by its physiological capabilities
of absorbing and processing the nutrients and oxygen. Alterna-
tively, the organism may  have different pathways for processing
nutrients, depending on their availability (Chaudhary et al., 2007).
The modelling of such phenomena introduces discontinuities in
the system models (modelled as saturation constraints or using
logic variables). Also a continuous process controlled using a pro-
grammable logic controller (PLC), which employs a combination of
continuous and logic based control algorithms, is a classic exam-
ple of a hybrid system. If such a process is modelled together
with the PLC, then the resulting model consists of both continuous
states as well as discrete states. A special class of hybrid systems,
namely autonomous hybrid systems is of interest in this work. In an
autonomous hybrid system, the discrete states are explicit func-
tions of the continuous states.

The problem of state estimation of autonomous hybrid systems
has begun receiving attention in the literature, only in the recent
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past. The main challenge in state estimation of autonomous hybrid
systems is the presence of discontinuities introduced because of
the discrete variables. While the extended Kalman filter (EKF) is
widely used for state estimation of nonlinear systems, its major
drawback is that it requires computation of the Jacobian of the non-
linear state and measurement equations at every sampling instant.
Due to the use of discrete or logic variables in modelling such sys-
tems, it is not possible to compute the Jacobian of the nonlinear
model at such points. Hence, sampling-based derivative-free filters
have to be employed for state estimation of autonomous hybrid
systems (Vachhani et al., 2006; Prakash et al., 2010a; Straka et al.,
2011; Stano et al., 2013). Prakash et al. (2010b) have proposed
a modified version of the unscented Kalman filter (UKF) and the
ensemble Kalman filter (EnKF), for state estimation of autonomous
hybrid systems. These Bayesian filters do not require the Jaco-
bian of the system equations and the statistical properties of the
state estimates are computed using sample statistics. The point of
discontinuity gets straddled by the samples of the states and distur-
bances drawn from their respective distributions, thereby allowing
the UKF and EnKF to approximate the effect of the discontinuity.
Prakash et al. (2010b), however, assume that the characteristics of
the stochastic signals influencing the system dynamics are known
accurately. In practice, however, the latter assumption can prove to
be a bottleneck in the implementation of these filters. Juloski et al.
(2003) have proposed a particle filter based approach for state esti-
mation of such systems. In the recent past, Bemporad et al. (1999)
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and Ferrari-Trecate et al. (2002) have proposed moving horizon
estimation (MHE) formulations for state estimation of autonomous
hybrid systems.

Processes have to operate in the presence of various unmea-
sured disturbances. Accurate characterization of the unmeasured
signals is a critical step in the development of Bayesian state esti-
mators (Fitzgerald, 1976). When the state and the measurement
noise are assumed to be zero mean Gaussian white noise processes,
the problem of estimating the characteristics of these unmeasured
signals translates to estimation of the covariance matrices of the
Gaussian probability density functions. This choice of distribution
can be justified on the basis of the central limit theorem, which
states that an ensemble of sufficiently large number of indepen-
dent random variables, each with a well-defined mean and finite
variance, is normally distributed regardless of the underlying distri-
butions (Papoulis and Pillai, 2002). If the unmeasured disturbances
acting on a system are viewed as combined effects of multiple
independent physical causes, then it is reasonable to model their
total effect as Gaussian variables by invoking the central limit the-
orem (Soderstrom, 2002). The problem of estimating the state and
measurement noise covariance matrices, Q and R respectively, for
Kalman filter (KF) has been well studied in the literature. These
approaches can be classified as least-squares approaches (Mehra,
1970; Odelson et al., 2006) and maximum likelihood estimates
(MLE) approaches (Zagrobelny and Rawlings, 2015). However, rel-
atively much less work has been reported in the literature on
estimating the probability density functions of the noise associated
with nonlinear dynamic systems. Valappil and Georgakis (2000)
present a systematic method to estimate the process noise covari-
ance matrix, associated with the EKF. Their approach assumes a
structured uncertainty in the model, which can be modelled as
variations in the parameters. Prior knowledge about the param-
eter variances is fused with the state estimator, using parameter
sensitivity matrices. Lima and Rawlings (2011) have presented a
time-varying lagged autocovariance least-squares formulation to
estimate the noise covariance matrices from operating data. A least
squares formulation is developed using the linearized state space
model obtained at every sampling instant, to estimate the values
of the state and measurement noise covariance matrices. Recently,
Bavdekar et al. (2011) proposed to employ a constrained optimiza-
tion formulation under the MLE  framework for identification of the
state and measurement noise covariance matrices associated with
the use of the extended Kalman filter (EKF) for state and parame-
ter estimation. This approach uses operating input–output data and
yields optimal estimates of the noise covariance matrices, such that
they maximize the likelihood function of the innovations sequence
generated by the EKF. A numerical solution to the resulting nonlin-
ear optimization problem can be obtained using standard gradient
based optimization methods.

In this work, it is proposed to extend the approach developed
by Bavdekar et al. (2011) for estimation of the noise covariance
matrices associated with a more general class of nonlinear sys-
tems, which may  include discontinuities and to a wider class of
recursive Bayesian state estimators other than the EKF. In order
to accommodate the discontinuities, modified versions of the UKF
and EnKF (Prakash et al., 2010b) and their respective constrained
versions (Vachhani et al., 2006; Prakash et al., 2010a) are used
for state estimation. Under the assumption that the random
unmeasured process disturbances arise from physical sources and
the measurement noise arises from independent channels, the
problem of estimating the noise covariance matrices is formulated
as a constrained optimization problem in which a suitable objec-
tive function of the innovations sequence is minimized. Using
this assumption, the covariance matrices can be parametrized
as diagonal matrices, which helps in reducing the number of
parameters to be identified. The proposed approach is able to deal

with measurements that are irregularly sampled at multiple rates.
The efficacy of the proposed scheme is demonstrated through sim-
ulation studies on the benchmark hybrid three-tank system. The
proposed approach is further validated using experimental data
generated from the hybrid three tank setup available at Automation
Laboratory, Department of Chemical Engineering, I.I.T. Bombay.

The paper is organized as follows. The process modelling for
simulation and state estimation and the problem formulation for
identifying the noise covariance matrices are described in detail in
Section 2. The results obtained from simulations of the benchmark
hybrid three-tank setup and studies on the experimental prototype
are presented in Section 3.

2. Problem formulation

2.1. Process model

Consider an autonomous hybrid system given by the following
mechanistic model

dz
dt

= f(z, �, m, dm, du, p, t)

� = g(z)

yT (t) = h(z)

(1)

where z ∈ R
n denotes the continuous states of the process, � ∈

R
nd denotes the discrete states, m ∈ R

m denotes the manipulated
inputs, p ∈ R

p denotes the parameters of the process and yT ∈ R
r

denotes the true signal corresponding to the obtained measure-
ments. The function g(·) is expressed as a combination of logic
variables such as OR, AND, XOR, etc. dm ∈ R

dm represents the
measured disturbances and du ∈ R

du denotes the unmeasured dis-
turbances. The function h(·) is a map  between the states and the
measurements. In the present work, the discrete states, �, are
assumed to be solely a function of the continuous states x.

It may  be noted that the mechanistic model available involves
continuous time signals and derivatives, whereas the methods cho-
sen for nonlinear state estimation are in discrete time. Thus, it is
necessary to introduce additional assumptions to use the mecha-
nistic model for state estimation in discrete time. To arrive at such
a model, the following simplifying assumptions are made:

Assumption 1. The measurements are available as samples
obtained after every few time instants. The smallest sampling time
is T and the measurements can now be represented as

yk = h(zk) + vk (2)

where vk ∈ R
r represents the random measurement noise. The

measurement noise is assumed to be a zero-mean white noise sig-
nal with a Gaussian distribution, i.e. vk∼N(0, R), where R is the
covariance matrix. In case where some of the measurements are
sampled at irregular intervals, the measurement equation is writ-
ten as

yk = hk(zk) + vk (3)

where the dimension of the time-varying function vector hk(·) and
the measurement noise vector, varies between 0 and r, depend-
ing on the number of measurements available at the kth sampling
instant. In such a scenario, the measurement noise characteristic is
given by N(0, Rk), where the dimension of the covariance matrix Rk
changes with time. It is assumed that all measurements are sam-
pled at time intervals that are integral multiples of the smallest
sampling time, T.

Assumption 2. The manipulated inputs are piece-wise constants
over the smallest sampling interval, T

m(t) = mk for tk ≤ t < tk + T (4)
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