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a  b  s  t  r  a  c  t

In  this  paper,  an innovative  concept  named  Comprehensive  Pareto  Efficiency  is  introduced  in  the  con-
text  of  robust  counterpart  optimization,  which  consists  of  three  sub-concepts:  Pareto  Robust  Optimality
(PRO),  Global  Pareto  Robust  Optimality  (GPRO)  and  Elite  Pareto  Robust  Optimality  (EPRO).  Different
algorithms  are  developed  for computing  robust  solutions  with  respect  to  these  three  sub-concepts.  As  all
sub-concepts  are  based  on  the  Probability  of  Constraint  Violation  (PCV),  formulations  of PCV  under  dif-
ferent  probability  distributions  are  derived  and  an  alternative  way  to  calculate  PCV  is also  presented.
Numerical  studies  are  drawn  from  two  applications  (production  planning  problem  and  orienteering
problem),  to demonstrate  the  Comprehensive  Pareto  Efficiency.  The  numerical  results  show  that  the
Comprehensive  Pareto  Efficiency  has  important  significance  for practical  applications  in terms  of the
evaluation  of  the quality  of  robust solutions  and  the  analysis  of  the  difference  between  different  robust
counterparts,  which  provides  a new  perspective  for robust  counterpart  optimization.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Robust optimization (RO), originally introduced by Soyster
(1973) and later revitalized by Ben-Tal and Nemirovski (2002),
Bertsimas and Sim (2004), El Ghaoui et al. (1998) in late 1990s and
early 2000s, is a technique for handling uncertainties in mathe-
matical programming problems. In RO, an uncertainty set is firstly
determined, then a robust counterpart (RC) of the original opti-
mization problem is formulated where the solution should be
feasible for any uncertain realizations in the uncertainty set. The
objective of RO is to calculate a robust solution which satisfies
a decision-maker’s requirement (e.g., a robust solution with high
quality objective value and reliability). For general review and com-
prehensive explanation on RO, we refer to Ben-Tal and Nemirovski
(2002), Ben-Tal et al. (2009), Bertsimas et al. (2011), Gabrel et al.
(2014), Gorissen et al. (2015).

The definition of the uncertainty set plays an important role in
RO. It directly determines the underlying RC and then affects the
whole process of RO. Many works have devoted to the construction
of the uncertainty sets. The first one is considered by Soyster (1973)
in which all possible uncertain realizations are included. This uncer-
tainty set is too pessimistic and conservative which is not preferred
in practice. Later El Ghaoui et al. (1998), Ben-Tal and Nemirovski
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(2002) consider ellipsoidal uncertainty sets and the resulting RC is a
second-order cone programming (SOCP). Bertsimas and Sim (2004)
define a budgeted uncertainty set which leads to a linear program-
ming (LP). This uncertainty set is further improved by Ke et al.
(2013) which is called proportion-based uncertainty set specifically
suitable for 0–1 integer programming problems. Bertsimas et al.
(2004) generalize the definition of the uncertainty sets by more
general norms. In particular, the l1 and l∞ norms result in linear
programming problems, and the l2 norm results in a second-order
cone programming problem. Li et al. (2011) presents a system-
atic study on different uncertainty sets defined by different norms
and their combinations for linear and mixed integer programming
problems and derived corresponding RC. Other works related to
uncertainty set construction include Bertsimas and Brown (2009)
which construct the uncertainty set from coherent risk measures
perspective, Ben-Tal et al. (2013), Bertsimas et al. (2013) construct
the uncertainty set from a data-driven and statistics perspective,
etc.

With the uncertainty set defined, the robust optimal solution
can be obtained by solving the corresponding RC. One important
procedure is to check the quality of the robust solution, in order to
make the right decision. One criterion of the solution quality is the
objective value. When the uncertainty lies in the constraint, then
the Probability of Constraint Violation (PCV) naturally becomes
another criterion of the solution quality. For a decision maker,
a solution with better objective value and lower PCV is always
preferred. Many works have devoted to establishing the Probabil-
ity Bounds of Constraint Violation (PBCV) when the distribution
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information is unknown or partially known, we refer to Bertsimas
and Sim (2004), Lin et al. (2004), Paschalidis and Kang (2015), Ben-
Tal et al. (2009), Li et al. (2012), Guzman et al. (2016). To the best
of our knowledge, there is no systemic work on establishing PCV
with known probability distributions in RO.

Iancu and Trichakis (2013) first introduced the concept of Pareto
efficiency in the context of the RO methodology for linear opti-
mization problems. The traditional RO optimizes the objective by
satisfying the uncertain constraints under all possible uncertain
realizations. However, as pointed out by Iancu and Trichakis (2013),
the RO does not optimize the slacks of constraints, in fact, it fails
to guarantee that no other solution exists yielding larger slacks
and at the same objective value. Iancu and Trichakis (2013) defines
the concept of Pareto Robust Optimality (PRO) based on constraint
slacks. For a decision maker, the PRO solutions are always preferred
to the non-PRO solutions as the non-PRO solutions can more readily
generate infeasibility. One problem exists in Iancu and Trichakis
(2013) is that comparing solutions feasibility by constraint slacks
is very intuitive and sometimes not so accurate. A solution with
less constraint slacks may  has higher feasibility. Instead the PCV
is the most accurate measurement of solution feasibility. Based on
this observation, we can redefine the PRO by using PCV rather than
constraint slacks to improve the accuracy. The premise is that the
probability distribution information is known beforehand.

In this paper, we introduce an innovative concept named Com-
prehensive Pareto Efficiency in the context of robust counterpart
optimization for linear and 0–1 integer programming problems
with uncertain constraints. The main contributions are as follows:

1. Comprehensive Pareto Efficiency is initially introduced which
consists of three sub-concepts: Pareto Robust Optimality (PRO),
Global Pareto Robust Optimality (GPRO) and Elite Pareto Robust
Optimality (EPRO).

2. Different algorithms are developed for computing robust solu-
tions with respect to PRO, GPRO and EPRO.

3. Formulations of PCV under different probability distributions
are derived, and an alternative way for calculating PCV is also
presented.

4. We  draw numerical studies on two applications (production
planning problem and orienteering problem), to demonstrate
the Comprehensive Pareto Efficiency in terms of the evaluation
of the quality of robust solutions and the analysis of the differ-
ence between different robust counterparts.

The remainder of the paper is organized as follows: Section 2
reviews the robust counterpart optimization methodology, Sec-
tion 3 introduces the Comprehensive Pareto Efficiency concept
which consists of three sub-concepts, Section 4 describes the calcu-
lation of PCV under different probability distributions, Numerical
studies are drawn in Section 5 with two applications and Section 6
concludes the whole paper.

2. Robust counterpart optimization

In this paper, we consider the following linear programming
problem and 0–1 integer programming problem simultaneously:

LP: max
{

cTx : Ax ≤ b, x ≥ 0
}

(1a)

0-1 IP: max
{

cTx : Ax ≤ b, x ∈ {0, 1}N
}

(1b)

where c ∈ R
N , A ∈ R

M×N , b ∈ R
M .

We  only consider single uncertain constraint in this paper.
Suppose the ith row of A is affected by uncertainty, denote the
transpose of ith row of A as uncertain vector ai ∈ R

N , each element
in ai is modeled as independent and symmetric random variable.

Then the ith constraint of the nominal linear programming problem
and 0–1 integer programming problem turns into

aT
i x ≤ bi (2)

The robust optimization methodology is thus to define a so-
called uncertainty set U for uncertain vector ai such that the ith
constraint satisfied as:

aT
i x ≤ bi, ∀ai ∈ U (3)

which is known as the robust counterpart of the uncertain con-
straint (2).

Without loss of generality, the uncertainty set U is defined as
follows:

U = {ai = ai + Ai�|� ∈ Z}  (4)

where ai is the nominal value, Ai = diag(ai) is the perturbation set
where ai ∈ R

N+ is the perturbation vector, � ∈ R
N is the vector of

primitive uncertainties, and Z is a convex set which can be defined
by a general norm of � as follows:

Z = {� ∈ R
N |
∥∥�
∥∥ ≤ �}  (5)

where ‖ · ‖ is any norm and � is the parameter controlling the size
of Z.

The key of RO is the definition of the set Z, a particular Z directly
determines the corresponding robust counterpart. One  concern in
RO is the tractability of the robust counterpart. The norm defined
by ł∞, ł1 and ł2 will lead to tractable robust counterparts (Bertsimas
et al., 2004). The uncertainty set defined by ł∞ is called box uncer-
tainty set:

Z∞ = {� ∈ R
N |
∥∥�
∥∥

∞ ≤ �}  (6)

then the linear programming problem and 0–1 integer program-
ming problem have the same robust counterpart:

RC∞ = max
{

cTx : aT
i
x + �aT

i
x ≤ bi

}
(7)

In RC∞ only the ith constraint is presented and other constraints
are eliminated to keep it concise. In the following robust coun-
terparts we  only present the ith constraint as a convention, and a
robust counterpart represents a linear and an 0–1 integer program-
ming problem simultaneously.

The uncertainty set defined by ł1 is called polyhedral uncertainty
set:

Z1 = {� ∈ R
N |
∥∥�
∥∥

1
≤ �} (8)

and the corresponding robust counterpart is:

RC1 = max

{
cTx :

aT
i
x + z� ≤ bi

z ≥ âijxj, ∀j

}
(9)

The uncertainty set defined by ł2 is called ellipsoidal uncertainty
set:

Z2 = {� ∈ R
N |
∥∥�
∥∥

2
≤ �}  (10)

and the corresponding robust counterpart is:

RC2 = max
{

cTx : aT
i
x + �

√
xTA2

i x ≤ bi

}
(11)

The above three uncertainty sets are applicable when random
vector � is unbounded, if the random vector � is bounded in an inter-
val, specifically consider � ∈ [−1, 1]N, the above three uncertainty
sets need to be bounded in order to limit � in its bound. This leads
to two  more uncertainty sets which are applicable when � ∈ [−1,
1]N, the first one is the intersection of the box and polyhedral sets:

Z1∩∞ = {� ∈ R
N |
∥∥�
∥∥

1
≤ �,

∥∥�
∥∥

∞ ≤ 1} (12)
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