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a  b  s  t  r  a  c  t

In contrast  to classical  experiment  design  methods,  often  based  on  alphabetic  criteria,  economic  opti-
mal  experiment  design  assumes  that  our  ultimate  goal  is to solve  an  optimization  or  optimal  control
problem.  As  the  system  parameters  of physical  models  are  in  practice  always  estimated  from  measure-
ments,  they  cannot  be  assumed  to  be exact.  Thus,  if we  solve  the  model  based  optimization  problem
using  the  estimated,  non-exact  parameters,  an  inevitable  loss  of optimality  is  faced.  The  aim  of  economic
optimal  experiment  design  is precisely  to plan  an experiment  in such a  way  that  the  expected  loss of
optimality  in  the  optimization  is minimized.  This  paper  analyzes  the  question  how  to  design  economic
experiments  under  the  assumption  that  we have  more  than  one  candidate  objective  function.  Here,  we
want to  take  measurements  and  estimate  the parameters  before  we  actually  decide  which  objective  we
want  to minimize.

© 2016  Published  by Elsevier  Ltd.

1. Introduction

Model-based optimization is a mathematical tool that has appli-
cations in almost all fields of engineering. However, whenever
model-based optimization is used to simulate or control real-world
processes, an application of computer based numerical methods
has to be preceded by experiments that allow us to identify a
suitable model and to estimate its associated parameters. Opti-
mal  experiment design methods, as originally invented by Fisher
(1935), are sought to employ optimization methods already before
or during an actual experiment is performed in order to design the
experiment in such a way that its expected information content is
maximized.

Historically, optimal experiment design (OED) methods have
been developed by many authors, for regression models one of
the earliest works is Kiefer and Wolfowitz (1959) while the field
for nonlinear dynamic systems started with Espie and Macchietto
(1989). For a recent discussion on the state-of-the-art the reader
is referred to Franceschini and Macchietto (2008) for an overview.
The question how to formulate the objective of OED mathemati-
cally has no universal answer and from this perspective it is not
surprising that many suggestions have been made in the literature.
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Existing approaches are usually based on minimizing a “suitable”
scalar measure of the inverse of the Fisher information matrix
(or a direct approximation of the parameter variance–covariance
matrix (Heine et al., 2008)) such as the trace, determinant, max-
imum eigenvalue, or maximum diagonal element leading to the
so-called A-, D-, E-, or M-criterion, which also have statistical inter-
pretations (Franceschini and Macchietto, 2008). Here, an empirical
observation (see, e.g., Telen et al., 2012) is that for models with low
complexity and a few parameters only, it is—at least from a practical
perspective—not excessively important which of the above men-
tioned objectives is chosen as they often lead to very similar inputs.
This empirical observation might also be expected intuitively, since
all these design criteria aim at maximizing the “information content”
of the experiment in one or the other sense.

However, once we  consider more complex models with a mod-
erate to large amount of unknown parameters, different OED
objectives may  lead to significantly different experiments and, in
this case, the construction of the OED objective does itself become
a modeling problem. In this context, it is important to be aware
of the fact that many famous experiment design criteria such as
the A- and E-criterion are not even invariant under affine trans-
formations of the parameters (Franceschini and Macchietto, 2008).
Consequently, it might not even be clear how to choose a proper
scaling of the objective. One way to deal with this issue is to solve a
multi-objective OED problem, where a large number of OED prob-
lems with different candidate objectives is solved. In this case, the
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decision which of the corresponding experiments will be imple-
mented, is left to a human decision-maker (Logist et al., 2012;
Telen et al., 2012). It is clear that such a multi-objective approach
is an effective solution for problems, where it is enough to take a
small amount of candidate objectives into account. However, as
soon as we start screening a 3-, 4- or even higher dimensional
Pareto front, the multi-objective approach is limited by the curse of
dimensionality.

This paper is about how we can construct suitable objectives for
optimal experiment design under the assumption that our ultimate
goal is to solve model-based optimization or optimal control prob-
lems based on the parameters that are found from the experiment.
In this context, it is interesting to mention that for linear systems
it is a well-established concept to design experiments with respect
to the intended model application (Gevers and Ljung, 1986). This
concept has also been elaborated in the context of joint design for
control and identification (Hjalmarsson, 2009; Larsson et al., 2015).
In Hjalmarsson (2009) this idea has been elaborated and gener-
alized for a broad application spectrum by introducing a generic
concept considering quadratic performance degradation costs that
can be used to quantify the goal of the experiment design, while
in Larsson et al. (2015) the methodology is applied to an industrial
case study. Moreover, in Recker et al. (2012) the intended use of the
model is taken heuristically into account for the first time for for-
mulating the objectives in nonlinear model-based optimization and
optimal experiment design problems. The problem formulation
proposed in Houska et al. (2015) leads to a recent concept named
“Economic Optimal Experiment Design”, which is reviewed in Sec-
tion 2. The main contribution of this paper is that we extend the idea
of economic optimal experiment design for the case that we  have
more than one application in mind in Section 3. In other words, we
want to design experiments that allow us to estimate parameters
before we choose an objective function that we want to minimize
based on the estimated parameters. Here, our assumption is that
we have a set of candidate model applications, i.e., objective func-
tions, in mind when we design the experiment. This can be a typical
problem in large reaction networks or plant wide dynamic mod-
els. Focusing on the production of some specific desired products
(or different cell growth aims), will require an accurate estima-
tion of the (kinetic) parameters in the corresponding reaction
paths/sub units. This can lead to correlated requirements if the
reaction paths/sub units are similar or overlapping. If these are
hardly overlapping, a correlation between the different economic
objectives will not be expected. The corresponding mathematical
problem formulation leads to a non-convex min-max optimization
problem, which can be reformulated in the form of an equiva-
lent standard nonlinear programming problem, as discussed in
Theorem 3.1 of this paper. Section 4 introduces the two illustra-
tive case studies, namely, the Droop model and the Lee–Ramirez
bioreactor model of increasing complexity. The numerical results
of the case study are described in Section 5. Section 6 concludes the
paper.

Notation.
Besides mathematical standard notation, we  denote with S

n++
the set of symmetric positive definite matrices. Additionally, we
write A � B for two symmetric matrices A and B if the matrix B − A is
positive semi-definite. The notation A† denotes the Moore–Penrose
pseudo-inverse of the matrix A.

2. Economic optimal experiment design

In this section, we review the main idea of economic optimal
experiment design by briefly summarizing some of the basic con-
cepts that have originally been proposed in Houska et al. (2015). For
this aim, we start with the most simple case that we are interested

in an unconstrained least-squares parameter estimation problem
of the form:

min
p
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Here, H : R
nu × R

np → R
m denotes a given measurement function

and  ̇ ∈ S
m++ the variance–covariance matrix of the measurement

error. Additionally, an initial parameter estimate p̂ ∈ R
np is taken

into account, whose precision is assumed to be given in the form of
the variance–covariance matrix ˙0 ∈ S

np++.
The aim of optimal experiment design is to find an optimal input

u ∈ R
nu , which maximizes the information content of an experi-

ment. Here, information is often quantified in terms of the so-called
Fisher information matrix:

F(u, p):=˙−1
0 +

(
∂H(u, p)

∂p

)T

˙−1 ∂H(u, p)
∂p

,

whose inverse V(u, p):=F(u, p)−1 can be interpreted as an affine
approximation of the variance–covariance matrix of the predicted
parameter estimate (Ljung, 1999; Pukelsheim, 1993). The standard
identification procedure based optimal experiment design consists
of the following steps:

(1) Choose a scalar experiment design criterion  ̊ : S
np++ → R  and

solve the input design problem:

u∗ ∈ argmin
u

˚
(

V(u, p̂)
)

subject to G(u) ≤ 0

at the best available parameter estimate p̂. Here, G : R
nu → R

nG

is an inequality constraint function modeling the domain of
realizable inputs.

(2) Implement the control u* and collect measurements.
(3) Solve the parameter estimation problem (1) and store the new

parameter estimate p*.
(4) Stop if ˚(V(u*, p*)) < TOL for a desired accuracy tolerance TOL.
(5) Set p̂← p∗ and ˙0← V(u*, p*) and continue with Step 1.

Clearly, in the above outlined optimal experiment design pro-
cedure, the choice of the scalar design criterion  ̊ can have a large
influence on how the above identification procedure performs.
Examples for traditional designs are the A-criterion, E-criterion,
and D-criterion, which aim at minimizing the trace, maximum
eigenvalue, or determinant of the variance–covariance matrix,
respectively. However, these choices are rather ambiguous and,
in particular, in the literature on traditional optimal experiment
design approaches there is often no advice on how to systemati-
cally refine the design criterion if the above identification loop is
repeated more than once. This is in contrast to economic optimal
experiment (Houska et al., 2015). Here, the underlying assump-
tion is—in the easiest case—that our ultimate goal is to solve an
optimization problem of the form:

u∗(p) ∈ argmin
u

F(u, p) subject to G(u) ≤ 0, (2)

whose objective function F( · , p) : R
nu → R  depends on the

unknown parameter p. The inequality constraint function G :
R

nu → R
nG is assumed to be independent of p. Clearly, if we  solve

Problem (2) based on a parameter estimate instead of the exact
but unknown value, we will in general obtain an optimality gap.
Mathematically, this optimality gap can be defined as:

�(p):=F(u∗(p), pnature) − F(u∗(pnature), pnature),

where pnature denotes the exact but unknown parameter. Now, the
aim of the identification procedure is to determine the parameter
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