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a  b  s  t  r  a  c  t

Heat  exchanger  network  (HEN)  synthesis  can be formulated  as  an  optimization  problem,  which  can  be
solved  by  meta-heuristics.  These  approaches  account  for a large computational  time  until convergence.
In  the  present  paper the  potentialities  of applying  parallel  processing  techniques  to  a  non-deterministic
approach  based  on  a hybridization  between  Genetic  Algorithms  (GA)  and  Particle  Swarm  Optimization
(PSO)  were  investigated.  Six  literature  examples  were  used  as  benchmarks  for  the  solutions  obtained.
Comparative  experiments  were  carried  out to investigate  the time  efficiency  of  the  method  while  imple-
mented  using  series  or parallel  processing.  The  solutions  obtained  led  to lower  Total  Annual  Costs  (TAC)
than  those  presented  by the  literature.  As  expected,  parallel  processing  usage  multiplied  the  algorithm
speed  by  the  number  of cores  used.  Hence,  it can  be concluded  that  the proposed  method  is capable  of
finding  excellent  local  optimal  solutions,  and  the  application  of multiprocessing  techniques  represented
a  substantial  reduction  in  execution  time.

© 2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Few areas of study in industrial processes are capable of gen-
erating actual capital savings of magnitude comparable to those
originated from heat integration. Large share of this field is bound
purely to Heat exchanger network synthesis (HEN). The heat recov-
ered from the process streams through the HEN yields important
savings in utilities used to heat or cool process fluids. Moreover,
it is necessary to underline that the energy integration of a plant
culminates directly in a significant reduction on the emissions of
greenhouse gases. For these reasons, obtaining optimal HEN con-
figurations in an industrial plant is a valuable and widely studied
subject. Methods to obtain solutions to the HEN synthesis problem
can be essentially based on sequential heuristics or mathematical
programming, which require deterministic or non-deterministic
approaches in order to achieve optimal solutions. Moreover, a chal-
lenging feature that is also considered in this work is the presence
of process streams with phase change, which requires some extra
constraints to be used and makes HEN synthesis problems even
more difficult.

While demonstrating efficiency in obtaining optimal or near-
optimal solutions, stochastic methods require the execution of
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massive quantities of computational operations. Hence, these tech-
niques may  lead to rather high processing times. This is due to
the fact that most of these methods employ populations of can-
didate solutions and are guided by the best solutions found at each
iteration.

Computers with multi-core processors have become rather
common and affordable. With this technology, calculations can
be performed in parallel by using two or more processor cores in
order to save time. In this research, an attempt to aggregate the
potential of two  known non-deterministic optimization methods
is aimed, while investigating the performance improvement pro-
vided by multiprocessing techniques. A hybridization method using
Genetic Algorithms and Particle Swarm Optimization was devel-
oped. It gives the possibility of significant part of the calculations
to be performed in parallel. In addition, improved forms of both
methods are implemented in order to improve the quality of the
solutions by balancing local minima avoidance through diversity of
solutions and processing time. Hence, in this work, not only solu-
tions quality but time efficiency improvements are investigated.

1.1. Literature review

Literature has presented numerous approaches in order to
achieve optimal heat exchangers combination, which minimizes
deployment costs along with hot and cold utilities costs. At
first, the methodologies were based primarily on heuristics and
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Nomenclature

Methodologies (Genetic Algorithm)
C1 Lower TAC in the generation
Cn Higher TAC in the generation
couples Number of crossovers per generation
CrossProb Crossover probability
Ctotal Total annual costs
elim Number of eliminated individuals after crossover
fitness Fitness of an individual
genmax Maximum number of generations
mutchance Probability of applying mutation schemes
mutchance11 Probability of applying classic mutation
mutchance12 Probability of flipping a binary variable if clas-

sic mutation is applied
mutchance12max Maximum probability of flipping a binary

variable if classic mutation is applied
mutchance12min Minimum probability of flipping a binary

variable if classic mutation is applied
mutchance2 “Match Stage Swap” mutation probability
mutchance3 “Stage Scramble” mutation probability
mutchancemax Maximum probability of applying mutation

schemes
mutchancemin Minimum probability of applying mutation

schemes
Pop Initial population
T General variable for mutation probability in Eq. (40).
Tmax Maximum mutation probability in Eq. (40)
Tmin Minimum mutation probability in Eq. (40)

Methodologies (Particle Swarm Optimization)
C1 Lower TAC in the generation
c1 and c2 Parameters related to particle’s best and global best

positions
closeptmax Maximum number of particles that may  be

closer than “edistmin” from global best without a
reset

Cn Higher TAC in the generation
Cpen Penalty constant
E Euclidean distance
edistmin Minimum Euclidean Distance between particles

position and global best position
K Total number of iterations (Eq. (44))
Npt Number of particles
p Particle’s best position
pen Penalty value
pglobal Best position found by the swarm
r1 and r2 Random number between 0 and 1
resetmax Maximum number of times the particles velocities

can be reset
sameobjmax Maximum iterations allowed when global best

position value stagnates before a reset is imposed
totaliteropt Total PSO iterations in optimization stage
totaliteroptmax Maximum total PSO iterations in optimiza-

tion stage
totaliteroptmin Minimum total PSO iterations in optimiza-

tion stage
totaliterpostopt Maximum PSO iterations in post-

optimization stage
totaliterpreopt Total PSO iterations in pre-optimization

stage
v Particle velocity
� Inertia weight

�max Maximum inertia weight
�min Minimum inertia weight
X Generic variable
x Particle position
XBound Generic variable lower or upper bound

Subscripts/Indexes
i Particle index
k PSO iteration
x Index of an individual in GA population

Mathematical Modeling (Variables)
A Heat exchanger area [m2]
Acu Cooler area [m2]
Ahu Heater area [m2]
Ctotal Heat exchanger network total annual costs [$/y]
Fc Fraction of a cold stream branch [−]
Fh Fraction of a hot stream branch [−]
LMTD Logarithmic mean temperature difference [K]
ncontinuous Number of continuous variables [−]
nF Number of stream split fraction variables [−]
nQ Number of heat load variables [−]
ntotal Total number of variables [−]
nz Number of binary variables [−]
Q Heat load in a heat exchanger [kW]
QC Total heat load of cold utilities [kW]
Qcu Heat load in a cooler [kW]
QH Total heat load of hot utilities [kW]
Qhu Heat load in a heater [kW]
Qmax Maximum exchangeable heat load in a heat

exchanger [kW]
Tchuin Process cold stream inlet temperature in heaters [K]
Tcout Process cold stream outlet temperature from a heat

exchanger [K]
Thcuin Process hot stream inlet temperature in coolers [K]
Thout Process hot stream outlet temperature from a heat

exchanger [K]
Tmixc Temperature after mixers on cold streams [K]
Tmixh Temperature after mixers on hot streams [K]
U Global heat transfer coefficient [kW/(m2 K)]
z Binary variable representing existence of a heat

exchanger [−]
zcu Binary variable representing existence of a cooler

[−]
zhu Binary variable representing existence of a heater

[−]
�(1) Approach temperature on the hot end of a heat

exchanger [K]
�(2) Approach temperature on the cold end of a heat

exchanger [K]
�(3) Difference between cold and hot streams phase

change temperatures [K]

Mathematical Modeling (Parameters)
CA Area costs coefficient [$/(m2�y)]
Ccu Cold utility cost [$/(kW y)]
CF Heat exchanger fixed deployment costs [$/y]
Chu Hot utility cost [$/(kW y)]
CP Stream total heat capacity [kW/K]
CPc Cold stream total heat capacity [kW/K]
CPh Hot stream total heat capacity [kW/K]
EMAT Heat Exchanger minimum temperature approach

[K]
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