ARTICLE IN PRESS

Computers and Chemical Engineering xxx (2016) xxx-xxx

Contents lists available at ScienceDirect

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/compchemeng

A systematic visual methodology to design ionic liquids and ionic liquid mixtures: Green solvent alternative for carbon capture

Fah Keen Chong^a, Fadwa T. Eljack^b, Mert Atilhan^b, Dominic C.Y. Foo^a, Nishanth G. Chemmangattuvalappil^{a,*}

^a Department of Chemical and Environmental Engineering, Centre of Excellence for Green Technologies, University of Nottingham Malaysia Campus, Broga Road, 43500 Semenyih, Selangor, Malaysia

^b Department of Chemical Engineering, College of Engineering, Qatar University, PO Box 2713, Doha, Qatar

ARTICLE INFO

Article history: Received 5 October 2015 Received in revised form 31 March 2016 Accepted 3 April 2016 Available online xxx

Keywords: Group contribution Property clustering Property integration Ternary diagram

ABSTRACT

Ionic liquids (ILs) have gained great interest recently to substitute volatile organic compounds (VOCs). since their properties can be tuned to match certain targets and applications. Further to this, another possibility to optimise ILs for their specific application is through IL mixtures. In this work, an insightful and yet simple systematic approach to design pure ILs and their mixtures is presented. This newly presented approach allows the visualisation of IL mixture design problem, and hence provides insights and allows users to solve the problem visually. The visualisation of problem and solutions is achieved by applying property integration framework in this proposed methodology. In property integration framework, IL products design problem is mapped from property domain into cluster domain through property clustering technique. Therefore, the proposed methodology provides a property based platform to visualise the overall performance of the designed IL products with graphical tools. A feasible IL product is always designed to fit a purpose based on consideration of multiple target properties, but these properties can be contradicting one another. The presented approach allows multiple target properties consideration during the design process, by portraying these properties and target of each clearly on a single graphical tool. To date, the study of properties of pure ILs and IL mixtures is still in the infant phase, and these data are still scarce. Hence, some of the prediction models do not cover all available ILs. To overcome this problem, the proposed approach is developed to adapt property data of pure ILs directly, together with existing property prediction models to predict the properties of the designed IL mixtures. The presented approach is able to generate a list of potential solutions to users, and the final decision can be made by users accordingly, through further screening and experimental validations. An illustrative case study, which focuses on the design of carbon capture solvents, is solved to demonstrate the proposed approach. © 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Volatile organic compounds (VOCs) have been widely used for various industrial applications. However, the VOCs can easily escape into the atmosphere with detrimental effects on environmental and human health (Blanchard et al., 1999). Literature studies reported that the effects of VOCs range from nauseous to carcinogens (Muñoz et al., 2007), and even to global warming agents (Rocha-Rios et al., 2009). These problems occur mainly due to high volatility of the compounds, which can be avoided using low volatility compounds. Besides, using solvent with low volatility is

* Corresponding author. *E-mail address:* Nishanth.C@nottingham.edu.my (N.G. Chemmangattuvalappil).

http://dx.doi.org/10.1016/j.compchemeng.2016.04.006 0098-1354/© 2016 Elsevier Ltd. All rights reserved. more cost effective as solvent loss will be minimal. Recently, a new class of compounds, namely ionic liquids (ILs) has been introduced as a potential replacement of VOCs. ILs, which refer to organic salts that remain in liquid form at room temperature, exhibit no measurable vapour pressure at room temperature and remain stable over their wide temperature range (Marsh et al., 2004) due to Coulombic attraction between cations and anions (Bates et al., 2002). These suggest that ILs are more environmental friendly compared to VOCs for not releasing harmful compounds during process. Another key feature of ILs is that their thermophysical properties can be tuned through choosing proper cation-anion combinations (Plechkova and Seddon 2008). Hence, pure ILs can be designed to possess the most adequate characteristics and suit various industrial applications, such as electrochemical solvents, lubricants, heat transfer fluids, and entrainers (Brennecke and Maginn 2001).

Please cite this article in press as: Chong, F.K., et al., A systematic visual methodology to design ionic liquids and ionic liquid mixtures: Green solvent alternative for carbon capture. Computers and Chemical Engineering (2016), http://dx.doi.org/10.1016/j.compchemeng.2016.04.006

2

ARTICLE IN PRESS

F.K. Chong et al. / Computers and Chemical Engineering xxx (2016) xxx-xxx

Nomenc	lature	С	c
Abbrevia	tions	C C _{di}	T
AUP	Augmented property index	C_{di} C_{dk}	I I
CAMD	Computer-aided molecular design	C_{dk} $C_{P,i}$	۱ د
CCS	Carbon capture and storage	F_i	1
GC	Group contribution	1 i	/ t
IL	Ionic liquid	g ^{CH3}	ר ר
MEA	Monoethanolamine		L
MINLP	Mixed integer non-linear programming	$\Delta H_{\mathrm{vap},i}$ M	r M
VBI	Viscosity blending index	P_i^S	ſ
VOC	Volatile organic compounds	q_i	F
Ionic liqu	ids	r.	S
	Methylimidazolium cation	r _i	1
	Pyridinium cation	S	\ (
	Methylpyrrolidinium cation	S S _i	6
$[N_{4111}]^+$	Butyltrimethylammonium cation	Ji	(
[N ₁₈₈₈] ⁺	Methyltrioctylammonium cation	V	1
BF₄1-	Tetrafluoroborate anion	V Vi	r A
	Hexafluorophosphate anion	V _i VBI _i	1
	Bis(trifluoromethylsulfonyl)imide anion		ו
	2.0(v _k , v _m vk ⁽ⁱ⁾ , vn	$\eta^{(i)}$
Indices		xi	ľ
d	Property $(d = 1, 2, \dots, N_p)$	x_i	ľ
i	Component $(i = 1, 2,, p)$	X_m, X_n	F
k	Groups (k = 1, 2,, q)	y_i	ľ
Paramete		Greek S	ут
a _{mn}	UNIFAC group interaction parameter between	μ_i .	Ι
	group <i>m</i> and <i>n</i>	κ	ł
a _i	Constant for group <i>i</i> in Antoine equation	λ	1
$A_{k,\mu}$	Contribution of group k to parameter A_{μ}	ρ	Ι
b_i	Constant for group <i>i</i> in Antoine equation	ρ_c	(
$B_{k,\mu}$	Contribution of group k to parameter B_{μ}	ρ_i	I
-i	Constant for group <i>i</i> in Antoine equation	ρ_k	Ī
-i	Solvent cost of IL <i>i</i> (USD/mol)	ρ_{κ}	Ā
p_{k}	Specific heat capacity contribution of group k	σ^{ρ_0}	F
• '	(J/mol.K)	ϕ^r	F
$\Delta H_{\mathrm{vap},k}$	Heat of vaporisation contribution of group $k(kJ/mol)$	ϕ^r_δ	T
V	Avogadro constant	Ψδ	f
ı _k	Free bond number of group <i>k</i>	ϕ_i	(
P_k	Contribution of group k to the overall Hildebrand	γi Yi	ł
_	solubility parameter (MPa ^{1/2})	γ_i^C	(
$Q_k, Q_m,$	Q_n Group surface area parameter in the UNIFAC		c
_	model	γ_i^R	ł
R	Universal gas constant (J/mol.K)		C
R_k	Group volume parameter in the UNIFAC model	Γ_{K}	F
.,		$\Gamma_{K}^{(i)}$	F
Variables		ĸ	ŗ
A_{μ}	Coefficient in the model equation for the viscosity	θ_m	Ē
A_{κ}	Coefficient in the model equation for the electrical	Ψ_{nm}	(
	conductivity	τ_d	C
\mathbf{A}_{λ}	Coefficient in the model equation for the thermal	τ_d^{\min}	I
	conductivity	τ_d^{\max}	ι
AUP _i	Augmented property index for component <i>i</i>	$\Psi_d(au_{di})$	F
AUP_k	Augmented property index for group k	$\Psi_d(\tau_{dk}$) [
B_{μ}	Coefficient in the model equation for the viscosity		t
B_{κ}	Coefficient in the model equation for the electrical	$\psi_{d}^{ref}\left(au_{d} ight.$)
D	conductivity	'a tu	, r
B_{λ}	Coefficient in the model equation for the thermal	$\Psi_d(au_d)_l$	м
	conductivity	* a\~d)!	VI

С	Solvent cost of IL mixture (USD/mol)			
C _{di}	property cluster for property d of component i			
C_{dk}	Property cluster for property <i>d</i> of group <i>k</i>			
$C_{P,i}$	Specific heat capacity of component <i>i</i> (J/mol.K)			
F_i	Auxiliary property for component <i>i</i> (surface frac-			
•	tion/mole fraction)			
g ^{CH3}	Number of CH ₃ groups in the selected cation			
$\Delta H_{\text{vap},i}$	Heat of vaporisation of component <i>i</i> (kJ/mol)			
M	Molecular weight (g/mol)			
P_i^S	Saturated vapour pressure of component <i>i</i> (MPa)			
q_i	Parameter relative to the molecular van der Waals			
	surface areas of pure component <i>i</i>			
r _i	Parameter relative to the molecular van der Waals			
	volumes of pure component <i>i</i>			
S	CO_2 solubility in mixture (kmol CO_2 /kg solvent)			
S _i	CO_2 solubility in component <i>i</i> within mixture			
	$(\text{kmol}\text{CO}_2/\text{kg solvent})$			
V	Molecular volume (Å ³)			
V_i	Auxiliary property of component <i>i</i>			
VBI _i	Viscosity blending index of component i			
v_k, v_m	Number of group <i>k</i> or <i>m</i>			
vk ⁽ⁱ⁾ , vm	(i) Number of group k or m in component i			
x _i	Mole fraction of component <i>i</i> in liquid phase			
xj	Mole fraction of group <i>j</i> in the mixture			
X_m, X_n	Fraction of group <i>m</i> or <i>n</i> in the mixture			
<i>y</i> _i	Mole fraction of component <i>i</i> in gas phase			
Greek Sy				
μ_i	Dynamic viscosity of component i (Pa.s)			
к λ	Electrical conductivity (S/m) Thermal conductivity (W/m.K)			
ρ	Density (g/cm ³)			
ρ_{c}	Critical density (g/cm ³)			
ρ_c ρ_i	Density of component i (g/cm ³)			
ρ_{k}	Density contribution of group k (g/cm ³)			
ρ_{κ}	Adjustable parameter for density (g/cm^3)			
σ^{ρ_0}	Reduced density			
ϕ^r	Reduced dimensionless Helmholtz function			
ϕ^r_δ	Derivative of reduced dimensionless Helmholtz			
48	function			
ϕ_i	Gas-phase fugacity coefficient of component <i>i</i>			
φ_i γ_i	Activity coefficient of component <i>i</i>			
γ _i ^C	Combinatorial contribution to the activity coeffi-			
	cient of component <i>i</i>			
γ_i^R	Residual contribution to the activity coefficient of			
	component <i>i</i>			
Γ_{K}	Residual activity coefficient of group k			
$\Gamma_{K}^{(i)}$	Residual activity coefficient of group k in pure com-			
K	ponent <i>i</i>			
θ_m	Fraction of group m in a mixture of the liquid phase			
Ψ_{nm}	Group interaction parameter			
τ_d	d th property			
τ_d^{\min}	Lower bound of <i>d</i> th property			
τ_d^{\max}	Upper bound of <i>d</i> th property			
$\Psi_d(\tau_{di})$	Property operator of d^{th} property of component <i>i</i>			
$\Psi_d(\tau_{d\nu})$	Molecular property operator of <i>d</i> th property of func-			
u (uk)	tional group k			
$\psi_{d}^{ref}(\tau_{d})$	Reference value for molecular property operator of			
'a ('u)				

- $\psi_d^{ref}(\tau_d)$ Reference value for molecular property operator of d^{th} property
- $\Psi_d(\tau_d)_M$ Property operator of d^{th} property of mixture M

Please cite this article in press as: Chong, F.K., et al., A systematic visual methodology to design ionic liquids and ionic liquid mixtures: Green solvent alternative for carbon capture. Computers and Chemical Engineering (2016), http://dx.doi.org/10.1016/j.compchemeng.2016.04.006

Download English Version:

https://daneshyari.com/en/article/6595247

Download Persian Version:

https://daneshyari.com/article/6595247

Daneshyari.com