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the underlying non-Gaussian densities as sum of Gaussians, and explicitly incorporates constraints on
states during the measurement update step. This approach, labeled Constrained-Unscented Gaussian Sum
Filter (C-UGSF), can thus model non-Gaussianity in constrained, nonlinear state estimation problems. Its
applicability is demonstrated using three nonlinear, constrained state estimation case studies taken from
literature, namely, (i) a gas phase batch reactor, (ii) an isothermal batch process, and (iii) a continuous
polymerization process. Results demonstrate superior estimation performance along with a significant
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Constrained Bayesian update improvement in computational time when compared to Unscented Recursive Nonlinear Dynamic Data
Linear constraints Reconciliation (URNDDR), which is a popular nonlinear, constrained state estimation approach available
Optimization in literature.

Sum of Gaussians © 2016 Elsevier Ltd. All rights reserved.
1. Introduction Nonlinear propagation of the state probability density function

is, in general, an intractable problem. Existing popular approaches
in literature, such as Extended Kalman Filter (EKF) (Anderson and
Moore, 1979), Unscented Kalman Filter (UKF) (Julier and Uhlmann,
1997, 2004), and Ensemble Kalman Filter (EnKF) (Evensen, 2009),
when interpreted within the Bayesian framework, inherently
assume that the prior density obtained after propagation is Gauss-
ian. While this assumption makes these three approaches tractable,
it may lead to inferior state estimates for scenarios where the prop-
agated prior densities deviate significantly from Gaussianity. On
the other extreme, non-parametric approaches such as particle fil-
ters (PF) (Arulampalam et al., 2002) do not make any restrictive
assumption about the density. However, PFs require a large num-
ber of samples or particles, typically several orders of magnitude
larger than the number of states, and hence have been applied
only to lower dimensional problems (L6pez-Negrete et al., 2011;
Rawlings and Bakshi, 2006; Shenoy et al., 2013). Another class
of filters, namely, the Gaussian Sum Filters (GS-F) (Sorenson and
Alspach, 1971), are based on the premise that a sum of Gauss-
ian densities can represent any probability density function of the
states to an arbitrary degree of accuracy (Sorenson and Alspach,

States of a nonlinear dynamical system evolve based on conser-
vation principles and hence implicitly satisfy physical constraints
at any given instant of time. Examples of such constraints include
non-negativity of pressure and liquid levels, and mole fractions
of multi component mixture belonging to the interval [0 1] with
their sum being unity. In recursive Bayesian state estimation, these
states are treated as random variables. In particular, by making use
of nonlinear stochastic models for the states and measurements,
along with available real-time measurements, the aim is to infer
the conditional probability densities of the states (Maybeck, 1982).
Hence, a practical estimation approach should have the following
two features:

(i) nonlinear propagation of the state probability density,
and
(ii) incorporation of constraints in the estimation procedure.
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(Kotecha and Djuri¢, 2003), and the recently developed Unscented
Gaussian Sum Filter (UGSF) (Kottakki et al., 2014). Gaussian sum
based approaches require specification of several filter parame-
ters such as number of Gaussians, their underlying moments, and
weights assigned to these individual Gaussians. Although GS-Fs
eliminate the Gaussianity assumption, they are typically compu-
tationally more expensive than the filters that assume Gaussianity.
The recently proposed UGSF approach (Kottakki et al., 2014) uses
a specific choice of the above parameters which ensures that
the computational requirements are similar to UKF while simul-
taneously retaining the ability to model non-Gaussian densities.
Kottakkietal.(2014,2013) demonstrated the superior performance
(as well as computational benefits) of UGSF relative to both UKF and
GS-UKEF for several case studies.

Presence of constraints on the true states imposes addi-
tional challenges over and above the presence of non-linearity
and non-Gaussianity. Various extensions of the popular nonlin-
ear state estimation techniques have been proposed in literature
to incorporate constraints in the state estimation procedure
(Vachhani et al., 2005, 2006; Teixeira et al., 2010, 2009). These
include approaches that involve a modification of Bayes’ rule
by explicitly enforcing constraint satisfaction using numerical
optimization. Examples of such approaches are Recursive Non-
linear Dynamic Data Reconciliation (RNDDRA) (Vachhani et al.,
2005), Unscented Recursive Nonlinear Dynamic Data Reconcil-
iation (URNDDR®) (Vachhani et al., 2006), Modified Unscented
Recursive Nonlinear Dynamic Data Reconciliation (MURNDDRC)
(Kadu et al., 2010), and constrained particle filters (Lopez-
Negrete et al., 2011; Shao et al., 2010; Prakash et al.,, 2011),
with each approach employing modification of the Bayes’ rule
based update step in EKFA, UKFBC and PF approach, respec-
tively. Approaches that use the standard Bayes’ rule update
followed by an additional step to impose constraints have also
been proposed. Examples include projection based approaches
in UKF (Teixeira et al.,, 2010), density truncation approaches in
UKF (Teixeira et al., 2010; Simon, 2010; Kadu et al., 2013) and
EnKF (Prakash et al., 2010), and constrained Gaussian sum filters
(Straka et al., 2012). While all these approaches ensure constraint
satisfaction, the drawbacks associated with the corresponding
unconstrained approaches can carry-over to the constrained exten-
sions thereby leading to poor performances or high computational
costs.

In this work, we propose to extend UGSF for state estimation
of nonlinear dynamical systems in presence of linear inequality
constraints. In particular, the update step of UGSF is replaced by
a set of constrained optimization problems to ensure that the esti-
mated states are feasible with respect to the linear constraints. As
discussed earlier, UGSF does not impose the restrictive Gaussian-
ity assumption on state densities for nonlinear state estimation
problems. However, it is applicable only to systems driven by
Gaussian process and measurement noises. The computational
requirements of UGSF are comparable to UKF and are significantly
lower than the computational costs for implementing traditional
GS-Fs. It is therefore expected that a constrained extension of
UGSF will lead to a constrained state estimation method that
will enable modeling of non-Gaussian state densities at reason-
able computational costs. However, the proposed filter inherits the
limitation of UGSF of being applicable to systems driven by Gauss-
ian process and measurement noises. Further, while the originally
proposed UGSF is applicable to nonlinear measurement models
(Kottakki et al., 2014), in this work we restrict our attention to
systems with linear measurement models. In contrast, the con-
strained GS-F and constrained PF available in literature (Prakash
et al,, 2011; Straka et al., 2012; Zhao et al., 2014) are applicable to
systems with nonlinear measurement models and non-Gaussian

noises, and also incorporate nonlinear constraints (Straka et al.,
2012).

Organization of the rest of the paper is as follows: Section 2
discusses the problem statement. Section3 presents the pro-
posed constrained UGSF approach. Section4 presents results on
case studies selected from literature, and Section 5 concludes the

paper.
2. Problem statement
Consider a sampled-data system consisting of nonlinear process

dynamics, linear inequality constraints on the states and a linear
measurement function as,

Lk
X(tk)=X(tk71)+/ fx(t), u(t))dt +w(ty), w(t,)~M0,Q) (1a)

Ck—1

Ax(ty) <b (1b)
Vi = HX(t) + vg, v~MO, R) (2)
X(to)~MZXo0, Pojo) (3)

where,X(t) € R",u(t) € RP,represent the state and input vectors at
time t whiley, € R™, w(t;) € R", v, € R™ represent observation,
state noise and measurement noise, respectively at time t;. Further,
w(t;) and v, are assumed to be independent, Gaussian, and white
stochastic processes. The initial state is unknown but assumed to
have a Gaussian distribution as in Eq. (3). Function f : R" x RP — R"
in Eq. (1a) represents the nonlinear state dynamics while Eq. (1b)
specifies linear inequality constraints on the state vector x;. It is
assumed that the nominal process model obtained from Eq. (1a)
by excluding the state noise term, along with the linear inequality
constraints (Eq. (1b)) together form a well-posed system, i.e. for
feasible values of x(t;_1 ), the state x(¢; ) obtained through noise-free
model is also feasible. Hence,

G
AX(ty—1) =b = AX(tx_1) + / f(x(t), u(t))dt) <b (4)

k-1

InEq.(2),H € R™" represents the linear observation model. Mea-
surements y, are assumed to be available at regularly spaced
sampling instants t, k=0, 1, 2, 3, ... with Ts =t — t;,_; being the
sampling interval. For ease of notation, we define x; £ x(t;). The
filtering problem is to find a point estimate for x;, governed by
dynamics in Eq. (1a), using available measurements y1, yo, . . ., Yk
which are related to the states as in Eq. (2), and subjected to linear
inequality constraints given by Eq. (1b).

The next section presents the proposed constrained UGSF based
solution to this constrained nonlinear filtering problem.

3. Proposed Constrained Unscented Gaussian Sum Filter
(C-UGSF) approach for nonlinear state estimation

The basic (unconstrained) UGSF approach as proposed in lit-
erature (Kottakki et al., 2014) integrates the idea of unscented
transformation with a sum of Gaussian approximation. In partic-
ular, UGSF involves an unconstrained selection of sigma points
followed by their propagation through the process model. The
propagated sigma points are used to synthesize a Gaussian sum
approximation of the prior density. Upon availability of measure-
ment, the Gaussian sum prior density is updated using the Bayes’
rule to obtain the posterior density. However, constraints on states
are not incorporated in this update step. We now propose Con-
strained Unscented Gaussian Sum Filter (C-UGSF), where the state
constraints as given in Eq. (1b) are incorporated in the sigma point
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