

Contents lists available at ScienceDirect

Computers and Chemical Engineering

Optimized integration of renewable energy technologies into Alberta's oil sands industry

CrossMark

Computers & Chemical Engineering

Mohamed Elsholkami^a, Ali Elkamel^{a,*}, Francisco Vargas^b

^a Department of Chemical Engineering, University of Waterloo, Waterloo, Canada

^b Department of Chemical Engineering, Rice University, TX, United States

ARTICLE INFO

Article history: Received 23 August 2015 Received in revised form 1 February 2016 Accepted 23 March 2016 Available online 29 March 2016

Keywords: Process system engineering Oil sands Renewable energy Mathematical modeling Process optimization Process modeling Carbon management

ABSTRACT

An energy optimization model for the integration of renewable technologies into the energy infrastructure of the oil sands industry is presented. The proposed model determines the optimal configuration of oil producers and the energy infrastructure required to meet their energy demands. The model is geared toward the minimization of cost subject to carbon dioxide emission constraints. A mixed integer non-linear optimization model is developed that simultaneously optimizes capacity expansion and new investment decisions of conventional and renewable energy technologies. To illustrate its applicability, the proposed model was applied to a case study using data reported in the literature for various years of oil sands operations. A rolling horizon approach was implemented to determine the effect of investment decisions of previous operational years on the selection of new investment options. Results were compared with and without the incorporation of renewable energy technologies. The results obtained indicate that the proposed model is a practical tool that can be employed to evaluate and plan oil sands and energy producers for future scenarios. Moreover, the results show that renewable energy technologies have significant potential in reducing reliance on fossil-fuel based technologies and their associated CO₂ emissions. The emission constraints set for the operational year 2025 can only be achieved by the incorporation of renewables in the energy production mix.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Alberta's oil sands industry-current and future challenges

The majority of oil reserves in Canada are located in the Western Canada Sedimentary Basin, of which the oil sands in Alberta comprise the majority of reserves. The majority of Canadian oil sands are located in Alberta in three major deposits, which are Peace River, Cold Lake and Athabasca. The largest and most heavily developed among them is the Athabasca oil sands deposit, which includes deposits that can be surface mined and extensive in situ reserves. The Canadian Oil Sands is the third largest crude oil proven reserves in the world, which amount to proven reserves of about 168 billion barrels constituting approximately 97% of Canada's total oil reserves (Woynillowicz, 2005; National Energy Board, 2006).

The oil sands are a mixture of bitumen, sand, clay and water. Bitumen is a heavy viscous crude that requires significant amounts of energy for production, upgrading and transportation. Extracted bitumen can be diluted by solvents (e.g., naphtha) to reduce

* Corresponding author. *E-mail address:* aelkamel@uwaterloo.ca (A. Elkamel).

http://dx.doi.org/10.1016/j.compchemeng.2016.03.028 0098-1354/© 2016 Elsevier Ltd. All rights reserved. its viscosity for further transportation to be sold as commercial crude bitumen or to be upgraded to higher quality synthetic crude oil (SCO). Bitumen upgrading operations can be integrated with mining or steam assisted gravity drainage (SAGD) extraction operations, and they typically consist of hydrocracking or thermocracking processes to break the heavy hydrocarbon molecules into lighter ones. Mining extraction is typically employed for bitumen deposits located at depths up to 75 m. The oil sands are mined by electric and hydraulic shovels, which are then transported by trucks to separation units in which hot water and solvents are used to extract the bitumen from the oil sands mixture. In-situ methods are used for deep bitumen deposits that are located more than 75 m below the earth's surface, and they have been employed to recover deposits at depths within the range of 350-600 m below the surface. In-situ methods rely on the use of steam, solvents or thermal energy to extract the bitumen from the oil sands in order to enhance its flow, which is then pumped to the surface. The two prominent production technologies are mining and in-situ, the latter being more economically and environmentally preferable and will account to approximately two-thirds of future oil sands production capacity. Mining extraction is currently the dominant method used for bitumen extraction (National Energy Board, 2006; Oil Sands Discovery Centre, 2014; Kubik, 2013).

Nomenclatures				
Indices			HHV.,	High heating value of fuel used in power technology
b	Type of steam and hot water boilers		1111 <i>v</i> p	nie coal natural gas etc (MI/ton)
е	Type of existing energy production technology		HIG	Hydrogen requirement for hydrotreatment of IGO
h	Type of hydrogen production technology		neg	$(ton H_2/ton ICO)$
i	Type of energy production technology		HN	Hydrogen requirement for the hydrotreatment of
m	Type of integrated mining/upgrading SCO produc-		1110	n_{2} number n_{2} (ton H_{2} /ton number)
	tion route		HNC	Heating value of patural a_{25} (Cl/Nm ³)
0	Type of SCO production route		upcogen	Dower co produced or consumed by bydrogen
n	Type of power production technology		h^{h}	$r_{\rm ower}$ co-produced of consumed by hydrogen
P S	Type of integrated SAGD/upgrading SCO production		LIDD	Heat rate of power plant $n(MI/kW/h)$
5	route			Heating rate of budrogen production technology h
			1 IKI I _h	$(MI/top H_{-})$
Sets			HRU	(M)(ton 12) Hydrogen requirement for hydrocracking in low and
В	Set of boilers		$\Pi K O_0$	high conversion IC-finers (ton H ₂ /ton feed)
Е	Set of existing energy production units (i.e., power,		HRCEOn	^{hax} Maximum heat rate provided by a geothermal
	hydrogen, steam and hot water producers)		IIKOLO	nlant (MI/h)
Н	Set of hydrogen production plants		FR.	Natural gas requirement for IC-finers and delayed
Ι	Set of all energy production technologies		110	cokers (CI/ton VTB)
М	Set of integrated mining/upgrading SCO production		I	Length of $(O_2 \text{ pipeline} (km))$
	routes		MDC	Diesel consumption for mining extraction (I
0	Set of all SCO production routes		MDC	diesel/bbl bitumen)
Р	Set of power production plants		n_{i}	Efficiency of boiler type <i>b</i>
S	Set of integrated SAGD/upgrading SCO production			Operating and maintenance cost of boiler type b
	routes			(\$/vear)
			OMGEO	Operating and maintenance cost of geothermal
Paramete	ers			plants (\$/vear)
AWP	Annual energy yield of VESTAS wind turbine (kWh)		OMH _b	Operating and maintenance cost of hydrogen plant
CCB _b	Amortized capital cost of boiler type b (\$/year)		0	h (\$/vear)
CCGEO	Amortized capital cost of geothermal plants (\$/year)		OMHE	Operating and maintenance cost of electrolyzer
CCH _h	Amortized capital cost of hydrogen plant type h			(\$/vear)
	(\$/year)		OMP _n	Operating and maintenance cost of power plant p
CCHE	Amortized capital cost of electrolyzer (\$/year)		0 <i>p</i>	(\$/vear)
CCP_p	Amortized capital cost of power plant type p(\$/year)		PFB _b	Unit cost of fuel utilized by SAGD boiler b (\$/GI or
CO_2E	Maximum allowable level of CO ₂ emissions		D	\$/ton)
	$(ton CO_2/h)$		PF_m	Pumping factor for hydrotransport (kWh/ton/m)
d_m	Distance between mining location and extraction		PFH _b	Unit cost of fuel utilized by hydrogen plant h (\$/G]
	plant (m)		'n	or \$/ton)
DR	Fraction of diluent		PFP _n	Unit cost of fuel utilized by power plant p (\$/G] or
dT_m	Distance between extraction plant and tailing ponds		P	\$/ton)
	(m)		PFT_m	Pumping factor for transport of tailings
ECB	Electricity requirement for the production of com-			(kWh/ton/m)
	mercial crude bitumen (kWh/ton)		PD	Unit cost of diesel (\$/L)
ECC _i	Electricity requirement for compressing CO_2 for		PNG	Unit cost of natural gas utilized by natural gas boilers
	transport (kWh/ton/km)			(\$/GJ)
ECR	Power requirement for centrifugation (kWh/m ³)		PP_n^{max}	Maximum power production capacity of plant <i>p</i>
EDo	Electricity requirement for delayed cokers		P	(kWh)
	(kWh/ton)		PVF	Annuity factor for newly established technologies
EER	Electrolyzer energy requirement (kWh/Nm3)		EPVF _e	Annuity factor for existing technologies
ELo	Electricity requirement for LC-finers (kWh/ton)		S_{h}^{\max}	Maximum production capacity of boiler type b
EPVF	Annuity factor for existing technologies		D	(ton/h)
ESMR	Electricity requirement of steam methane reform-		SSC	Unit sequestration cost (\$/ton CO ₂)
	ing plants (kW/ton H ₂)		SC _m	Steam requirement for conditioning stage (ton
ΔHSS	Change in enthalpy of SAGD steam (MJ/ton)			steam/ton feed)
Δ HPS	Change in enthalpy of process steam (MJ/ton)		SF	Steam requirement for bitumen extraction (ton
ΔHHW	Change in enthalpy of hot water (MJ/ton)			steam/ton froth)
HHG	Hydrogen requirement for hydrotreatment of HGO		SOR	Steam to oil ratio (ton of steam/ton of bitumen)
· · · · m · v	$(ton H_2/ton LGO)$		SRD	Steam requirement for the diluent recovery unit
HH_h^{max}	Maximum production capacity of hydrogen plant h			(ton steam/ton feed)
	(ton/h)		SRF	Steam requirement for the fluid coker (ton
HHV _b	High neating value of fuel used in boiler technology			steam/ton feed)
	<i>b</i> i.e., natural gas, biomass etc. (MJ/ton)			
HHV_h	High heating value of fuel used in hydrogen tech-			
	nology h i.e., coal, natural gas, etc. (MJ/ton)			

Download English Version:

https://daneshyari.com/en/article/6595313

Download Persian Version:

https://daneshyari.com/article/6595313

Daneshyari.com