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a  b  s  t  r  a  c  t

Uncertainties  are  ubiquitous  and  unavoidable  in process  design  and  modeling.  Because  they  can  signifi-
cantly affect  the  safety,  reliability  and  economic  decisions,  it is important  to  quantify  these  uncertainties
and  reflect  their  propagation  effect  to process  design.  This  paper  proposes  the  application  of  generalized
polynomial  chaos  (gPC)-based  approach  for  uncertainty  quantification  and  sensitivity  analysis  of  complex
chemical  processes.  The  gPC approach  approximates  the  dependence  of  a process  state  or  output  on the
process  inputs  and  parameters  through  expansion  on an  orthogonal  polynomial  basis.  All  statistical  infor-
mation  of the  interested  quantity  (output)  can  be obtained  from  the  surrogate  gPC  model.  The  proposed
methodology  was compared  with  the  traditional  Monte-Carlo  and Quasi  Monte-Carlo  sampling-based
approaches  to  illustrate  its advantages  in terms  of  the  computational  efficiency.  The  result  showed  that
the gPC  method  reduces  computational  effort  for uncertainty  quantification  of complex  chemical  pro-
cesses  with  an  acceptable  accuracy.  Furthermore,  Sobol’s  sensitivity  indices  to identify  influential  random
inputs  can  be  obtained  directly  from  the  surrogated  gPC  model,  which  in  turn  further  reduces  the  required
simulations  remarkably.  The  framework  developed  in  this  study  can  be  usefully  applied  to  the  robust
design  of  complex  processes  under  uncertainties.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Most rigorous process design problems are carried out under
a deterministic setting with fixed specifications. In reality, how-
ever, the process inputs and parameters exhibit some randomness
as depicted in Fig. 1, which can have a significant effect on the
safety, reliability and economic decisions. Therefore, it is important
to examine the effects of these uncertainties and analyze the sen-
sitivity of the process model with respect to these uncertainties in
the design stage. Monte-Carlo (MC) and Quasi Monte-Carlo (QMC)
methods are representative probabilistic approaches for the propa-
gation of uncertainties in the model input to its output (Niederreiter
et al., 1996; Liu, 2001; Kroese et al., 2011; Abubakar et al., 2015). The
brute-force implementation of these models first involves the gen-
eration of an ensemble of random realizations with each parameter
drawn randomly from its uncertainty distribution. Deterministic
solvers are then applied to each member to obtain an ensemble of
results. The ensemble of results is then post-processed to estimate
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the relevant statistical properties, such as the mean, standard devi-
ation and quantile. Despite this, estimations of the mean converge
with the inverse square root of the number of runs, making MC-
and QMC-based approaches computationally expensive and even
infeasible for complex chemical process problems.

Recently, uncertainty analysis using a generalized polynomial
chaos (gPC) expansion was studied in various applications includ-
ing modeling, control, robust optimal design, and fault detection
problems. Nagy and Braatz (2007) considered the gPC approach for
uncertainty quantification and robust design of batch crystalized
process. In their work, it was shown that the gPC approach to be
more computationally efficient than the MC/QMC methods for a
system with a moderate number of random inputs. Duong and Lee
(2012, 2014) applied the gPC method to the PID controller design
for fractional order and integer order systems. Du et al. (2015)
considered the fault detection problem by combining maximum
likelihood with the gPC framework. The gPC method originated
from Wiener chaos (Wiener, 1938). This method is a spectral repre-
sentation of a random process by the orthonormal polynomials of a
random variable. Exponential convergence is expected for the gPC
expansion of infinitely smooth functions (i.e., analytic and infinitely
differentiable). Ghanem and Spanos (1991) reported that the gPC
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Fig 1. Uncertainty propagation and quantification in chemical processes.

is an effective computational tool for engineering purposes. Xiu
and Karniadakis (2002) further generalized PC for use with non-
standard distributions.

This work demonstrates and validates the applicability of poly-
nomial chaos theory for uncertainty quantification and sensitivity
analysis for complex chemical processes such as natural gas and
syngas production. The proposed gPC based method can reduce sig-
nificantly the computational cost (simulation time) for uncertainty
quantification over traditional approaches, such as the MC/QMC
methods. Moreover, Sobol’s sensitivity indices (Sobol, 2001) can
also be directly obtained from the gPC surrogate analytical model
(Crestaux et al., 2009; Sandoval et al., 2012), which can in turn be
used to detect the influential inputs in the propagation of process
uncertainty.

2. Uncertainty quantification using polynomial chaos
theory

Consider a steady-state process that is described with a set of
following nonlinear equations:

F(y,�) = 0 (1)

where � = (�1, �2,. . .�N) is a process input variable vector expressed
by a random vector of mutually independent random components
with probability density functions of �i(�i):�i → R+; and y denotes
a process state and output variable vector.

The joint probability density of the random vector, �, is � =
N∏

i=1

�i, and the support of � is � ≡
N∏

i=1

�i ∈ RN . The uncertainties

in the process inputs � are then propagated through the entire pro-
cess, as shown in Fig. 1. The set of one-dimensional orthonormal
polynomials, {�i(�i)

di
m=0}, can be defined in finite dimension space,

�i, with respect to the weight, �i(�i). Based on a one-dimensional
set of polynomials, an N-variate orthonormal set can be constructed
with P total degrees in space, �, using the tensor product of the one-

dimensional polynomials, the basis function of which satisfies the
following:∫

�

˚m(�)˚n(�)�(�)d� =
{

1 , m = n

0 , m /= n
(2)

Consider a response function f(y(�)) for a process state vari-
able, y, with the statistics (e.g., mean, variance) of interest, the
N-variate Pth order approximation of the response function can be
constructed as follows:

fN
P(y(�)) =

M∑
i=1

f̂i˚i(�) ;

M + 1 =
(

N + P

N

)
= (N + P)!

N!P!

(3)

where P is the order of polynomial chaos, and f̂m is the coefficient
of gPC expansion that satisfies Eq. (2) as follows:

f̂i = E[�if (y)] =
∫

�

f (y)�i(�)�(�)d� (4)

where E[·] denotes the expectation operator.
The coefficients of the gPC expansion from Eq. (4) are normally

obtained numerically using the following procedure (Xiu, 2010):

• Choose a N-dimensional integration rule (cubature nodes and
weights)

�Q [g] = (Qq1
(1) ⊗ . . . ⊗ QqN

(N)) [g] =
q1∑

j1=1

. . .

qN∑
jN=1

g(�(j1)
j , . . .,  �(jN )

j )

(w1
(j1). . .w1

(jN )) ∼=
∫

�

g(�)�(�)d� (5)

where ⊗ denotes the tensor product, and �Q[·] denotes the multi-
variate cubature approximation.

• Approximate the gPC coefficients in Eq. (4) using the numerical
integration rule in Eq. (5).
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