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a  b  s  t  r  a  c  t

The  manual  determination  of  chemical  reaction  networks  (CRN)  and  reaction  rate  equations  is  cumber-
some  and becomes  workload  prohibitive  for large  systems.  In this  paper,  a framework  is developed  that
allows  an  almost  entirely  automated  recovery  of  sets  of reactions  comprising  a  CRN  using  experimental
data.  A global  CRN  structure  is used  describing  all feasible  chemical  reactions  between  chemical  species,
i.e.  a superstructure.  Network  search  within  this  superstructure  using  mixed  integer  linear  programming
(MILP)  is  designed  to promote  sparse  connectivity  and can  integrate  known  structural  properties  using
linear  constraints.  The  identification  procedure  is successfully  demonstrated  using  simulated  noisy  data
for linear  CRNs  comprising  two to  seven  species  (modelling  networks  that  can  comprise  up to forty  two
reactions)  and  for  batch  operation  of  the  nonlinear  Van  de  Vusse  reaction.  A  further  case  study  using  real
experimental  data  from  a biodiesel  reaction  is  also  provided.

©  2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

A major barrier in the transition from chemistry research to pro-
cess development is that more quantitative information, regarding
a chemical synthesis, is needed. For process development the
over-riding concern is to mathematically characterise the route
from reactants to products, which often occurs over several reac-
tion steps, with the involvement of measurable intermediates.
The objective is to develop stoichiometric and kinetic descrip-
tions of chemical reactions as opposed to obtaining a detailed
mechanistic understanding of a synthetic route. For multiple reac-
tion systems, this is referred to as a chemical reaction network
(CRN). A mathematical model of a CRN, written as a set of cou-
pled non-linear ordinary differential equations (ODEs) describing
the dynamic behaviour of the system, instantiates a CRN in com-
mercial process simulation and optimization software. Software of
this nature is required for numerous reasons including, accurate
and economic plant design and process optimization (Maria, 2004)
and so methods, tools and procedures for rapidly establishing a CRN
using experimental data are desirable.

In particular, methods that can be applied to data obtained from
reaction systems operating far away from chemical or biochemical
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equilibrium are of interest. This is because batch and semi-batch
reactors – rather than continuous stirred tank reactors (CSTRs) –
tend to be used in the fine chemical and pharmaceutical industries
during the new chemical entity development lifecycle. Further-
more, the increased uptake of high throughput technologies e.g.
automated robotic workstations for performing many experiments
in parallel, coupled with improved sensor technology is likely to
provide an increase in the quantity and quality of non-equilibrium
experimental reaction data.

The work by Aris and Mah  (1963) has been the basis for many
stoichiometric and kinetic modelling studies aimed at CRN deter-
mination. One of the earliest advances being made by Bonvin and
Rippin (1990) who proposed target factor analysis (TFA). This may
be used to identify the number of linearly independent reactions.
It may  also be used to test suggested reaction stoichiometry is
consistent with experimental data. Using TFA as a basis Brendel
et al. (2006) and Bhatt et al. (2012) demonstrate an incremental
identification strategy for CRNs. In their step-wise procedure, reac-
tion stoichiometry (the CRN structure) is identified using TFA and
then kinetic model identification strategies are used to determine
the most appropriate ODE model (specifically, the structure and
parameters of the rate laws). This decomposition of the problem
allows for systematic development of a CRN. However, as stepwise
methods are essentially local search operators they may  produce
sub-optimal solutions (local minima to the global optimization
problem).
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A contrasting approach is to parameterise a suitable ODE model
structure directly from the observed data and to use the resulting
model to infer network properties. Domain dependent knowledge
can be exploited to narrow the network search space, by restricting
the form of the ODE model used to explain the dynamic behaviour
of the CRN. For instance, (bio) chemical reactions, occurring in well
mixed, relatively dilute, homogeneous phases – such as may  be
found in controlled laboratory batch and fed-batch experiments –
typically obey the law of mass action kinetics. This allows a class
of physically interpretable ODE models with pseudo-linear prop-
erties to be formulated, enabling classical regression techniques
to be applied to the CRN model search process. While Crampin
et al. (2004), Searson et al. (2007), Srividhya et al. (2007), Burnham
et al. (2008), Searson et al. (2012), Hii et al. (2014) demonstrate
the potential of this approach the identification methods used fail
to consistently predict an underlying network structure. Potential
explanations for this are that, (a) Crampin et al. (2004), Srividhya
et al. (2007), Burnham et al. (2008) use step-wise identification pro-
cedures which are susceptible to local minima, (b) while Searson
et al. (2007), Searson et al. (2012), Hii et al. (2014) use evolutionary
algorithms (EAs) structural constraints are difficult to incorporate
into any EA (it is generally left to the objective function to manage
and quantify possible structural infeasibility rather than directly
imposing these constraints as part of network search). Therefore,
an EA will perform poorly if the search space is highly constrained.

MILP (and variants such as mixed integer quadratic program-
ming, integer linear programming etc.) has been used for many
years for process synthesis, scheduling and control and a vast
amount of literature are available, e.g. Grossmann (1985), Achenie
and Biegler (1990), Raman and Grossmann (1991, 1992), Floudas
and Lin (2005), Moro and Grossmann (2013) are a selection of
examples of the literature in this area. To synthesize process flow-
sheets using MILP, a superstructure e.g. see Achenie and Biegler
(1990) is often used. This is constructed to contain all possible
alternatives of a potential process flowsheet of which the optimal
solution belongs. The use of a superstructure for process synthesis
has proved an effective tool in many application studies. Adopting
this approach for CRN elucidation, defines a global model structure
(which can be represented as a digraph) consistent with all possible
kinetic rate terms arising from elementary chemical reactions. In
effect this simplifies the difficult task of simultaneous structure and
parameter estimation to one of just parameter estimation, where
correct estimation of the parameters (links within the digraph) is,
in principle, sufficient to deduce the structure of the underlying
reaction network.

In this work, parameter estimation is achieved through mini-
mization of the sum of the absolute errors (the L1 norm) between
measured and predicted species concentrations. In the absence of
additional constraints on the structure of the system equations
any identification strategy will normally over-fit the observed data
with terms being included which model measurement noise rather
than actual system dynamics. This would have negative effects on
both the portability of the model (its ability to model different
instances of the system) and the interpretability of the model (vital
for network identification). Therefore, it is preferable to introduce
additional information into the cost function in order to balance
the trade-off between model complexity (in this case, the number
of reactions) and how well the model fits the data. A number of
regularization techniques are available, including ridge regression
(Hoerl and Kennard, 1970) and the Least Absolute Shrinkage and
Selection Operator (LASSO) proposed by Tibshirani (1996) e.g. see
a review by Hesterberg et al. (2008). The method proposed in this
paper is conceptually similar to these techniques however, a set
of binary variables (associated with each of the parameters of the
model) are used to perform regularization rather than the parame-
ters themselves. The binary variables provide a normalised entropy

Fig. 1. A weighted digraph representing the Van de Vusse reaction with nodes m =[
c1 c2

1 c2 c3 c4

]T
edges labelled with isothermal rate constants.

Fig. 2. An unweighted directed graph, representing the reaction superstructure for
chemical reactions (1) (all possible reactions between the species—which admits
ninety possible chemical reactions). The digraph was  generated in MATLAB 2015b
using the built in digraph command.

measure (independent of the magnitude of the regression param-
eters) and are directly related to the number of chemical reactions
within the network. Whilst determination of these binary variables
increases the number of parameters being identified as part of the
optimization process, they are also used to indicate ‘options’ (e.g.
between different reactions or species combinations) effectively
turning ‘on’ or ‘off’ alternative solutions to an optimization prob-
lem. This provides a flexible identification framework that may  be
used to incorporate known information about the chemical species
and reactions in the form of linear equality and inequality con-
straints. Furthermore, the MILP can be solved using fast, efficient
and readily available commercial (and open source) software.

2. Chemical reaction networks

A CRN may  be represented by a directed graph (or digraph). For
example, Fig. 1 shows a weighted di-graph representation of the
following CRN comprising four reactive species x1, . . ..,  x4 involved
in three reactions (known as the Van de Vusse reaction scheme),

2x1 → x2 (1)

x1 → x3 → x4

The graph is labelled with nodes, m =
[

c1 c2
1 c2 c3 c4

]T

and there are connections between the nodes which are referred
to as edges (or links) in the graph. The links have a specified
direction—as indicated by the arrows. The nodes are associated
with the concentration of chemical species and are defined using
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