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a  b  s  t  r  a  c  t

A  sparse  parameter  matrix  estimation  method  is proposed  for identifying  a stochastic  monomolecular
biochemical  reaction  network  system.  Identification  of a reaction  network  can be  achieved  by  estimating
a  sparse  parameter  matrix  containing  the reaction  network  structure  and  kinetics  information.  Stochastic
dynamics  of a biochemical  reaction  network  system  is  usually  modeled  by a chemical  master  equation
(CME)  describing  the  time  evolution  of  probability  distributions  for all possible  states.  This  paper  consid-
ers  closed  monomolecular  reaction  systems  for  which  an  exact  analytical  solution  of  the  corresponding
chemical  master  equation  can  be  derived.  The  estimation  method  presented  in  this  paper  incorporates
the  closed-form  solution  into  a regularized  maximum  likelihood  estimation  (MLE)  for  which  model  com-
plexity  is  penalized.  A  simulation  result  is  provided  to  verify  performance  improvement  of  regularized
MLE  over  least-square  estimation  (LSE),  which  is  based  on a deterministic  mass-average  model,  in  the
case  of  a small  population  size.

©  2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Stochastic dynamics of biological systems have lately received
increased attention from researchers in the field of biological
engineering (Raj and van Oudenaarden, 2009). In the past, such
studies were greatly hampered by lack of qualitative measure-
ment data. Nowadays, quantitative but noisy data can be obtained
using the microarray technology. Recent developments in sens-
ing techniques that can provide real-time observations of intrinsic
stochastic dynamics at small length scales have motivated many
scientific investigations (Raj et al., 2010; Xie et al., 2008). One
such sensing technique for biological systems is bio-imaging using
fluorescent proteins (García-Parajó et al., 2001). By grafting a
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fluorescent protein into gene expression, proteins and mRNA
expressions originating from targeted DNA can be detected quan-
titatively in real time. Specifically, yellow fluorescent protein (yfp)
(Elowitz et al., 2002; Li and Xie, 2011; Yu et al., 2006) has been
widely used for detecting changes with single-macromolecule sen-
sitivity in individual live cells.

In the real-time data reported in the aforementioned papers,
strongly stochastic behavior has been observed. For example, bursts
of transcribed protein molecules from the cell, controlled by an
identical messenger RNA molecule, have different copy numbers
(Elowitz et al., 2002). The total population number of species in
the system within the detectable range is small, ranging from tens
to thousands of copies. Stochastic dynamics of systems with dis-
crete states can be modeled by the chemical master equation (CME)
(Feinberg, 1979; Fichthorn and Weinberg, 1991),
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whereP (�, t) is the probability of the system being in discrete state
� at time t, and W (� ′, �)is the transition rate from state � ′ to state
�. The CME  describes the time evolution of the probability distri-
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bution among all possible configurations, and can be written as
(MacNamara et al., 2008; Munsky and Khammash, 2006)

dP (t)
dt

= A
(

t; �
)

P (t) (2)

where P (t) is the state vector containing all the state probabil-
ity variables and A

(
t; �

)
is a matrix containing all the transition

rate constants with dependence on the model parameter vector �
related with physicochemical phenomena, e.g., biochemical reac-
tions. Many numerical algorithms have been developed for solving
the matrix ordinary differential Eq. (2), which can be divided into
direct methods (MacNamara et al., 2008; Munsky and Khammash,
2006) and indirect methods (Gibson and Bruck, 2000; Gillespie,
1977). Direct methods, such as the finite state projection (FSP)
algorithm, attempt to evaluate the matrix exponential directly. In
practice, given the large size of the state space, indirect meth-
ods that use stochastic simulation algorithms (SSAs) to generate
approximate probability distributions have been more popular.

A reaction network is one of fundamental models for describing
biological mechanisms. Different types of biological reaction net-
works exist and interact to accomplish needed functions including
gene regulatory networks, metabolic networks, and signaling net-
works. Network identification is an important aspect of studying
biological network systems. Given time series experimental data
from sensors, a parameter estimation method can be used to iden-
tify the parameters of a given reaction network model. Typically,
the estimation is formulated to find parameter values minimiz-
ing the difference between the experimental data and their model
predictions. Most of the literature has employed least-squares
estimation (LSE) approaches, which fit stochastic data to a deter-
ministic continuum model (Gennemark and Wedelin, 2009).

The LSE method based on deterministic models, however, can
provide poor parameter estimates for highly stochastic systems
(Tian et al., 2007). Several stochastic parameter estimation meth-
ods based on the stochastic differential equation of type (1) have
shown improved estimation performance (Munsky et al., 2012).
These methods attempt to solve for the probability density func-
tions (PDFs) of the CME  and use them for estimation. Previous
studies employed the moment-based method (Munsky et al., 2009;
Zechner et al., 2012), the Bayesian method (Boys et al., 2008;
Golightly and Wilkinson, 2011; Lillacci and Khammash, 2010), the
maximum likelihood estimation (MLE) method (Daigle et al., 2012;
Tian et al., 2007), and the density function distance (DFD) method
(Lillacci and Khammash, 2013; Poovathingal and Gunawan, 2010).
However, these published methods are based on approximated
PDFs of the CME. In many cases, PDFs are approximated using the
SSA approach (Gillespie, 2007), which typically demands a very
large number of simulations to be performed for an accurate esti-
mation.

In many cases, the exact network structure of a biological system
is not known. An important problem in biological systems is to use
measurement data to identify the topology of reaction networks
and estimate associated parameters at the same time. Craciun and
Pantea, 2008 discussed the issue of identifiability of reaction net-
works with the fact that there might exist more than one parameter
set that fits the measurement data with the same level of accuracy.
To cope with such challenges, model discrimination/invalidation of
reaction networks has been studied (Conradi et al., 2005; Kremling
et al., 2004). Non-uniqueness of an estimation algorithm can be
overcome by using the principle of parsimony and choosing sim-
ple models over complex models (Jefferys and Berger, 1991). An
approach to reduce model complexity is to use penalization term
for the number of parameters such as ridge and �1 regularization
(Hesterberg et al., 2008).

Taking the above issues into consideration altogether, this paper
considers stochastic monomolecular reaction systems in a sparse

parameter matrix estimation problem. Stochastic monomolecu-
lar reaction system, described by an exact probability distribution
solution of the CME  (Jahnke and Huisinga, 2007), can represent
realistic gene regulatory networks or metabolic networks. The
exact solution enables formulation of a regularized MLE  method
rather than LSE. Improved performance over the LSE method is
verified with a simulation study involving a small scale reaction
network system. Applicability of the proposed MLE  method to a
more stochastic and larger scale reaction network system is also
tested.

2. Biochemical reaction network system

In a living organism, most biological functions arise from com-
plex interactions between numerous components such as genes,
metabolites, and proteins. The interactions form a large biochem-
ical reaction network system involving thousands of components.
Gene expression is the main mechanism by which cells regulate the
interaction webs to perform functions. The gene expression pro-
cess occurs in two  steps: (1) transcription of genes into mRNAs
initiated by specialized proteins and (2) translation of mRNAs into
biochemically active proteins. By detecting the gene expression
time-profiles, we  can construct a model of the gene–gene interac-
tion which can be a subset of a larger network (Fig. 1) (Gardner et al.,
2003). This gene network identification has important potential
applications, for example, in drug discovery to identify candidate
pathways to be targeted (Schreiber, 2000).

Gene regulatory networks as well as other complex biochem-
ical reaction networks, such as metabolic networks (Feist et al.,
2008; Jeong et al., 2000) and signal networks (Hyduke and Palsson,
2010), can be described by a combination of monomolecular reac-
tions (Radulescu et al., 2012). Possible monomolecular reactions
can be categorized with conversion, inflow, and outflow reactions
with a set of n ∈ N  different species or complexes denoted by Si,
i = 1, . . .,  n. The reactions are given by

Si

kij→Sj Conversion(i /= j)

So
k0j→Sj Inflow

Si
ki0→S∗ Outflow

(3)

where So and S∗ are pseudo-species outside the system and kij is a
nonnegative rate constant for reaction from Si to Sj for i /= j and can
be time-varying. The monomolecular conversion reaction excludes
catalytic or splitting reactions of the types

Si
k→Si + Sj Catalytic(i /= j)

Si
k→Sj + Sr Splitting(i /= j /= r)

(4)

If the number of species in the system is sufficiently large, the
dynamics of the system can be described by the deterministic ordi-
nary differential equations

dCi (t)
dt

=
∑
j /= i

kji (t) Cj (t) −
∑
j /=  i

kij (t) Ci (t) , i = 1, . . .,  n (5)

where Ci (t) is the population density or concentration of the species
Si and continuous variable. Eq. (5) can be written in a vector form
as

dC (t)
dt

= A (t) C (t) (6)

[A]ij (t) = kji (t) , j /= i (7)

[A]ii (t) = −
∑
j /=  i

kij (t) (8)
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