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a  b  s  t  r  a  c  t

In  the  present  work  the  Direct  Quadrature  Method  of  Moments  (DQMOM)  has  been  implemented  into
the commercial  CFD code  TransAT.  DQMOM  has  recently  become  a very  attractive  approach  for  solving
population  balance  equation  (PBE)  due to  its  capability  of  representing  the  most  interesting  properties  of
the population,  eg. Sauter  mean  diameter,  void  fraction,  number  of particles.  The  DQMOM  technique  was
coupled  with  the turbulent  N-phase  Algebraic  Slip  Model  (ASM)  model  in  order  to extend  the model  to
handle  dispersed  phase  populations  such  that  each  class  has  its own  velocity  field.  The results  compared
to  experimental  data  show  that  the  developed  numerical  model  accurately  predicts  void  fraction  profile
in  a long  riser  within  a bubbly  flow  regime.  Moreover  the  model  is  used  for  the  simulation  of  bubble
column,  proving  that  it accurately  predicts  the  gas  hold  up  and  the Sauter  mean  diameter.

©  2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

In many industrial applications and in nature as well, bub-
bles are dispersed in a liquid continuum. The understanding and
the modeling of dispersed flows physics is therefore of high
importance for many applications including chemical engineering
(bubble columns), water treatment (ozonation and purification),
nuclear industry (steam generators, accidental depressurization),
naval transport (skin drag reduction) and medicine or biotechnol-
ogy (contrast agent, micro bubbles bursting, virus replication in cell
structures), see e.g. (Latorre, 1997; Yadigaroglu et al., 2008; Hsiao
et al., 2010; Ishikawa et al., 2013; Jakobsen, 2014; Dürr et al., 2015).

The dynamics of bubbly flows is very complex in nature. Typi-
cally various complex phenomena are present simultaneously, such
as bubble collisions and coalescence or breakage. Almost all inter-
actions between bubbles occur in the presence of turbulence or
hydrodynamic mixing, which usually dictate their rate. Under such
conditions, the assumption of constant bubble size may  lead to
incorrect predictions of gas-liquid multiphase flow behavior. The
evolution and creation of bubbles of different sizes require the
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representation of the particle size distribution. This is typically
achieved by the Population Balance Models (PBM) (Ramkrishna
and Mahoney, 2002), where the statistical distribution of the dis-
persed phase can be tracked. The N-phase model with algebraic slip
between phases (Manninen et al., 1996) as implemented in TransAT
(Lakehal et al., 2013) needs to be extended in this regard. Since
the N-phase model solves for the volume fraction of each phase,
a natural way to extend it would be direct discretization of the
distribution into a number of size bins with birth and death terms
accounting for processes such as breakup, coalescence, growth, etc.
(Frank et al., 2005; Yeoh et al., 2012; Krepper et al., 2008).

Among the other available PBM methods, such as the Method
of Moments (MOM), Quadrature Method of Moments (QMOM)
and their different variants (Marchisio and Fox, 2013), DQMOM
(Marchisio and Fox, 2005) is chosen in this study. The main reason
to not use the direct discretization method is the fact that moment-
based methods are more efficient in capturing the distribution
function. It has been shown that whereas 12–18 bins were required
for the direct discretization method (Sanyal et al., 2005; Selma
et al., 2010), equal or more accurate results were obtained with
only 6 moments using the QMOM method. However, the QMOM
method remains difficult to implement because the moment equa-
tions are directly solved, whose closure requires the recreation of
the quadrature nodes and weights from the moments in order to
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Nomenclature

CD Drag force coefficient
CL Lift force coefficient
CWL Wall force coefficient
D Diffusivity [m2s−1]
Eo Eötvös number
N Total number of phases
Nc Total number of classes
Pr Prandtl number
Re Reynolds number
R  Radius [m]
Sc Schmidt number
S Shear rate tensor [s−1]
Y Mass fraction
ã Breakage frequency [m−3s−1]
b̃ Daughter size distribution function
d Diameter [m]
d32 Sauter mean diameter [m]
g Gravity acceleration [ms−2]
j Superficial velocity [ms−1]
k Turbulence kinetic energy [m2s−2]
kV Bubble shape factor
�n Normal vector
p Pressure [Pa]
t Time [s]
u Velocity coordinate [m/s]
x Spatial coordinate [m]
yw Wall distance [m]

Subscripts:
b Bubble
c Class index
d Dispersed
f Fluid
i,j,k,l Vector index
l Liquid
m Mixture
t Turbulent

Superscripts:
d Drift
m Mixture
s Slip
td Turbulent dispersion

Greek letters:
�  Volume fraction
˜̌ Coalescence kernel [m3s−1]
� Abscissa, node [m]
� Weight [m−3]
� Kinematic viscosity [m2s−1]
� Dynamic viscosity [Pa s]
� Density [kg m−3]
� Surface tension [N m−1]
� Turbulence dissipation rate [m2s−3]

close the terms with higher order moments. Also, the velocity field
associated with a given moment is difficult to interpret if it depends
strongly on the internal coordinate of the population balance equa-
tion; as it is typically in case of bubbles of widely different sizes.

DQMOM, on the other hand, directly solves for the nodes and
weights of the quadrature approximation instead of the chosen
moments, and is therefore easier to implement, still offering good

accuracy at acceptable computational effort (Cheung et al., 2013).
This is important in the N-phase context wherein the population
balance might need to be solved for multiple dispersed phases.

It is worth mentioning that DQMOM was  originally developed
for homogeneous systems (no spatial gradients of particle size of
each class) and its application to inhomogeneous systems poses
several challenges. One of the critical issues of DQMOM is the prob-
lem of zero weights, which makes it not possible to calculate the
dispersed phase size when solving for the weighted abscissa. For
practical problems, zero weights (or number density) can occur
naturally due to segregation of particles due to the flow or due
to condensation of bubbles. Another issue is the condition where
two particle classes converge to the same size making one of them
redundant. This leads to ill-conditioning of the system. This paper
presents the implementation of monovariate DQMOM into TransAT
with all the necessary improvements for handling inhomogeneous
flows, such as dealing with the ill-conditioning of the system due to
the above mentioned phenomena. The method is then successfully
applied to the simulation of complex flows such as vertical risers
and bubbles columns which are of direct industrial relevance.

2. Mathematical model

In order to describe the dynamics of N-phase flows an Algebraic
Slip Model (ASM) extended to N-phases is used in the present work.
Within this framework the DQMOM method is used to capture the
most important properties of the dispersed phase like bubble size,
void fraction or interfacial area. In this study, only the population
of one of the phases is represented using DQMOM.

2.1. N-phase algebraic slip model

Multiphase gas-liquid flows can be tackled using either interface
tracking methods (ITM) or phase-average models, for both laminar
and turbulent flows. Specifically, the Level-Set approach, the phase-
field variant and the Volume-of-Fluid methods can be employed
as ITM’s. In the context of phase-average models, eg. the mixture
(homogeneous) approach applied to gas-liquid systems, transport
equations are solved for the mixture quantities rather than for
the phase-specific quantities, unlike in the two-fluid model. This
implies that one mixture momentum equation is solved for the
entire flow system, reducing the number of equations to be solved
in comparison to the two-fluid model. In many situations however,
the model must be employed with a prescribed closure law for the
interphase slip velocity and associated stresses. In this case, the
model is known as homogeneous ASM.

The N-phase approach is an extension of the homogeneous ASM
introduced above, and is invoked in situations involving more than
two fluid phases. The N-phase approach could as well be used in
the two-fluid flow context. In the homogeneous ASM framework,
the N-phase features a modified scheme where mass conservation
and energy equations are solved for each phase to better cope with
interphase mass transfer, whereas the momentum is solved for the
mixture. Further, the model can be used either under its homoge-
neous form or by adding an algebraic slip velocity to separate the
phases.

The N-phase ASM represents multiphase flow in an ensem-
ble averaged sense, where the involved phases move at different
or equal velocities under the assumption of equilibrium within
short spatial length scales (Manninen et al., 1996). The model also
requires that the relaxation time for dispersed phase is short in
comparison with changes in the flow, therefore Stokes number «1.
This condition is generally met  when dispersed phase particles are
small or carrier fluid viscosity is high. Thus the model is suitable
for modeling rising bubbles in a liquid. The model is given in the



Download English Version:

https://daneshyari.com/en/article/6595364

Download Persian Version:

https://daneshyari.com/article/6595364

Daneshyari.com

https://daneshyari.com/en/article/6595364
https://daneshyari.com/article/6595364
https://daneshyari.com

