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a  b  s  t  r  a  c  t

It is of  great  importance  to develop  an online  modeling  method  for chemical  processes  operated  in closed
loop  for  better  understanding,  monitoring  the  process  or other  purposes  without  endangering  the system.
This paper  intends  to devise  an  online  system  identification  method,  particularly  for  the  batch  process,
by  fully  exploiting  its  intrinsic  repetitiveness.  It properly  uses  the  information  from  the time  direction
and  the  batch  direction,  thus  leading  to  a gradual  performance  enhancement.  In  addition,  the  identifi-
cation  method  formulates  the  priori  controller  knowledge  such  as  closed-loop  stability  as  optimization
constraints  to refine  the  parameter  estimates.  A  trust  region  method  is employed  to  overcome  the  signif-
icant  computation  burden  of directly  handling  these  constraints  such  as solving  Lyapunov  inequalities.
An  adaptive  filter  is introduced  to  further  smooth  the  parameter  estimates.  Finally,  the  effectiveness  of
the  approach  is verified  by  three  numerical  examples  including  a two-tank  system.

© 2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Dynamic mathematical models play a pivotal role in chemical
engineering, especially in process control, as they provide engi-
neers a precise evolutional picture of the process of interests, which
renders the future performance improvement possible, such as
redesigning controllers or set points. Generally speaking, dynamic
mathematical models are mechanism-based, data-based or a mix-
ture of the both. Mechanism-based models link the process input
and output by invoking fundamental physical or chemical princi-
ples, e.g., mass conservation, with a bunch of ordinary differential
equations (ODEs) or partial differential equations (PDEs). These
equations are generally difficult to solve, or it lacks efficient meth-
ods to solve them; that makes some advanced control or monitoring
strategy intractable, like adaptive control (Åström and Wittenmark,
2013; Ioannou and Sun, 2012; Slotine and Li, 1987; Craig et al.,
1987; Mosca, 1995), model predictive control (Mayne et al., 2000;
Qin and Badgwell, 2003; Camacho and Alba, 2013; Morari and
Lee, 1999; Chen and Allgöwer, 1998), etc. Unlike mechanism-based
models, data-based models take a different approach to circumvent
these problems, by only focusing on the relationship between pro-
cess input and output instead of emphasizing the real mechanism
between them. In the discipline of process control, the methods
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to build dynamic data-based model are called system identification.
There are two categories of system identification methods accord-
ing to the operation condition of the plant under investigation –
open loop and closed loop. In the past decades, lots of interesting
results have contributed to the open-loop system identification, no
matter in theory (Ljung, 1987; Söderström and Stoica, 1988) or in
application (Zhu, 2001; Huang and Shah, 2012; Ikonen and Najim,
2001).

However, in reality, there are many situations where open-
loop identification is difficult to implement or even not a feasible
option. The simplest example to illustrate this is a plant exhibits
integral behaviour, or has open-loop pole(s) in the right half com-
plex plane (in the continuous-time sense). In this particular case,
the plant’s output always has an unbounded trend for almost any
input signal; that compromises the identifiability of the open-loop
identification and necessitates the closed-loop identification with-
out jeopardizing the plant’s normal operation (Landau and Karimi,
1997). The closed-loop identification also provides room for con-
troller tuning or controller redesign to further improve control
performance. Motivated by these reasons, closed-loop identifica-
tion has aroused lots of attention in control community. From the
aspect of frequency analysis, Gustavsson, Ljung and Söderström
deeply discussed the fundamental problem of closed-loop iden-
tification – identifiability (Gustavsson et al., 1977; Ljung, 1987;
Söderström and Stoica, 1988). Zang, Hjalmarsson, Van den hof,
and their colleagues studied the connection between identifica-
tion in closed loop and controller redesign in the frequency domain
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(Zang et al., 1995; Hjalmarsson et al., 1996; Van Den Hof and
Schrama, 1995). Forssell and Ljung categorized and analyzed pre-
diction error method in a unified framework (Forssell and Ljung,
1999). Huang and Shah developed a two-stage method and imple-
mented it on a pilot-scale process (Huang and Shah, 1997). On
the other hand, from the perspective of time domain, Landau
and Karimi developed various recursive identification methods by
duplicating the system and comparing the output error (Landau and
Karimi, 1997, 1999). Huang, Qin, and their coworkers developed
closed-loop subspace identification method based on whitening
the error (Huang et al., 2005; Qin and Ljung, 2003).

In this paper, our primary contribution is to devise a closed-
loop identification algorithm, particularly for batch process. It is
known that batch process, different from continuous process, has
its unique dynamic properties such as time variation (Yang and
Gao, 2000). Thus, directly applying the aforementioned methods to
batch process may  not yield satisfactory identification results. For
instance, suppose that a plant y(t) = G(t, q−1)r(t) is operated per-
fectly under a certain controller with r(t) as its reference signal. If
using prediction error method to identify the plant, the prediction
error is comprised of two components: one is from the mismatch
of parameter estimates, the other is from the dynamics varia-
tion. This can be seen from �(t) = y(t) − ŷ(t|t − 1) = [G(t, q−1) −
G(t − 1, q−1)]r(t) + [G(t − 1, q−1) − Ĝ(t|t − 1, q−1)]r(t). A plausible
approach to resolve the problem is to exploit the repetitive-
ness of batch process, which borrows the idea from iterative
learning control (ILC), using the information from two  direc-
tions – time direction and batch direction. To be specific, the
prediction error will be �k(t) = yk(t) − ŷk(t, k|k − 1) = [Gk(t, q−1) −
Gk−1(t, q−1)]r(t) + [Gk−1(t, q−1) − Ĝk|k−1(t, q−1)]r(t); the first term
will disappear since Gk(t, q−1) = Gk−1(t, q−1).1 Similar literatures are:
Ma and Braatz studied offline identification methods for batch pro-
cess (Ma  and Braatz, 2003); Tayebi (2004) and Chi et al. (2008) used
the ILC idea but without considering transient identification per-
formance; our previous paper (Cao et al., 2014) has only discussed
the open-loop case.

The second contribution of this paper is that we  use the pri-
ori closed-loop knowledge to refine the parameter estimates.
As pointed out in our previous work (Cao et al., 2014), the
identification results directly generated by two-time dimensional
identification algorithm entails severe variation on parameter esti-
mates; to some extent, it contradicts the fact that most chemical
processes have slow dynamic variations. The technique – soft con-
straint – has been employed to tackle this problem in our previous
work (Cao et al., 2014); whereas in this paper, we intend to impose
“hard” constraints instead. These constraints are formulated from
the priori closed-loop knowledge. A straightforward example is that
the closed-loop poles are all within the unit disk, which follows
from the closed-loop stability. Unfortunately, these constraints
usually appear as Lyapunov inequalities, a non-convex form or
computationally unfriendly. Thus, a trust region method is taken
advantage of to circumvent this challenge. To ensure the recursive
feasibility, the “size” of the trust region is recursively estimated
by the techniques developed in robust control. Interestingly, the
“size” estimation process and the identification process can run in
parallel. In addition, an adaptive low-pass filter is introduced to
further neutralize the variation; in the mean time, the filter does
not compromise the established recursive feasibility.

The paper is organized as follows: Section 2 derives the uncon-
strained closed-loop identification methods based on minimum
prediction error methods (MPE);  Section 3 refines the parameter
estimates by imposing constraints formulated from the priori

1 k stands for batch index, which can also be called iteration index or period index.

closed-loop knowledge; Section 4 analyzes the projection property
and recursive feasibility; Section 5 verifies the proposed method
by presenting three numerical examples; Section 6 draws a con-
clusion.

Notations: t and k stand for time and batch index respectively.
q−1 represents a unit time backward shift operator. ‖�‖M =

√
�TM�

is the Euclidean norm. The hat (•̂) means estimation or something
associated with estimates. ⊗ is the Kronecker product. vec is the
vectorization operator. T signifies transposition. �max(•), �(•) are
the maximum eigenvalue and spectral radius of (•) respectively.

2. Unconstrained closed-loop identification

2.1. Closed-loop output prediction

Within the paper, we assume that a batch process can be delin-
eated by the following discrete-time autogressive exogenous (ARX)
model,

A(t, q−1)yk(t) = B(t, q−1)uk(t) + ek(t), (1)

where yk(t) and uk(t) are, respectively, the plant’s output and input
at time t of the kth iteration. ek(t) is a two dimensional white noise,
with

E[ek(t)em(n)] = �2ık,mıt,n.

ık,m, ıt,n are Kronecker deltas, and ık,m = 1 if and only if k = m.
A(t, q−1) and B(t, q−1) are scalar polynomials with time varying
coefficients as shown in the following equations,

A(t, q−1) = 1 + a1(t)q−1 + a2(t)q−2 + · · · + ana(t)q−na, (2a)

B(t, q−1) = b1(t)q−1 + b2(t)q−2 + · · · + bnb(t)q
−nb. (2b)

Here a1(t), a2(t), . . .,  ana(t) and b1(t), b2(t), . . .,  bnb(t) are the time
varying coefficients to be identified. na,  nb are the polynomial
orders. In the paper, it is assumed that these orders are exactly
known. It is necessary to put two  remarks on the plant model in
(1). First, in reality, most batch processes exhibit certain nonlinear-
ity. However, in many cases, the plants are required to track a given
set point trajectory; the objective is usually achieved by a feedback
controller. This fact provides process control engineers sufficient
rationales to approximate the real dynamics in the proximity of
the trajectory with a linear time varying (LTV) model,  i.e., (1). Sec-
ond, from (2b), it is assumed that the input delay order (nd) is equal
to 1. This assumption does not impose any restriction. Because it is
trivial to extend to nd = d case by treating first d − 1 coefficients in
(2b) as zero. The ARX model has been assumed, because it is sim-
ple and enough to capture batch processes’ dynamics in practice,
for example, the work of Yang and Gao on injection molding (Yang
and Gao, 2000).

Furthermore, assume that the plant in (1) is operated in closed
loop to track a given reference by an R-S-T controller (a two-degree-
of-freedom controller). This type of controller has been reported
widely applied in controller analysis, i.e., Landau and Karimi (1997,
1999). The block diagram of the closed loop is shown in Fig. 1. The
associated control law is given as

uk(t) = −R(q−1)
S(q−1)

yk(t) + T(q−1)
S(q−1)

rk(t). (3)

Here rk(t) is the reference signal; it can be decomposed into
two components like rk(t) = rr(t) + rnr,k(t). rr(t) is the repetitive
component that the system is required to follow; rnr,k(t) is the
non-repetitive part with relatively small magnitude to provide the
system with sufficient excitation. nr,  ns and nt correspond to the
orders of scalar polynomials R(q−1), S(q−1) and T(q−1). Without
loss of generality, the polynomial S(q−1) is given in the canoni-
cal form, i.e., S(q−1) = 1 + S*(q−1), where S*(q−1) = s1q−1 + · · · + snsq−ns.
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