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a  b  s  t  r  a  c  t

For  dynamic  optimization  applications,  real-time  solution  reliability  is  improved  if there  is an  initialized
prior  solution  that  is  sufficiently  close  to  the  intended  solution.  This  paper  details  several  initialization
strategies  that  are  useful  for obtaining  an  initial  solution.  Methods  include  warm  start  from  a prior  solu-
tion,  linearization,  structural  decomposition,  and  an  incremental  unbounding  of decision  variables  that
leads  up  to solving  the originally  intended  problem.  Even  when  initialization  is  not  required  to solve  a
dynamic  optimization  problem,  a staged  initialization  approach  sometimes  leads  to  an  overall  faster  solu-
tion time  when  compared  to a  single  optimization  attempt.  Several  challenging  optimization  problems
are  detailed  that include  a  high-index  differential  and  algebraic  equation  pendulum  model,  a  standard
reactor  model  used  in many  benchmark  tests,  a tethered  aerial  vehicle,  and  smart  grid  energy  storage.
These  applications  are  representative  of a larger  class  of  applications  resulting  from  the  simultaneous
approach  to optimization  of  dynamic  systems.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Differential and algebraic equations (DAEs) are natural expres-
sions of many physical systems found in business, mathematics,
systems biology, engineering, and science. In business, the sup-
ply chain can be optimized by modeling the storage, production,
and consumption throughout a network (Manenti et al., 2010).
In mathematics, ordinary (ODEs) or partial differential equations
(PDEs) are used to describe certain classes of boundary value prob-
lems. In engineering, these equations result from material, energy,
momentum, and force balances (Buzzi-Ferraris and Manenti, 2014).
In science, laws of motion are naturally described by differential
equations that relate position, velocity, and acceleration (Sun et al.,
2014; Kumar and Daoutidis, 1999).

Just as differential equations naturally describe many systems,
these same equations can also be used to optimize among many
potential designs or feasible solutions. One difference between
static or steady-state models and dynamic models is that optimal
solutions must not only observe constraints at one time point, but
also along a future time window. Part of what makes a dynamic
solution challenging is that design variables at one time instant
affect both current and future objective values and constraints in
the time horizon. This is generally challenging from an optimization
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standpoint because of many degrees of freedom that are adjustable
at each time step, strong nonlinear relationships, and a wide range
of sensitivities between the adjustable parameters and multiple
objectives.

1.1. Simulation and optimization of DAE systems

There are many solution approaches for sets of ODEs or DAEs
and a review of all possible methods is beyond the scope of this
work. Dynamic systems can be solved as ODEs or DAEs through
the simultaneous approach (Biegler, 2007; Biegler et al., 2012;
Carey and Finlayson, 1975; Renfro et al., 1987; Liebman et al.,
1992; Albuquerque and Biegler, 1995; Cervantes and Biegler, 1998)
to dynamic optimization as opposed to a semi-sequential (Hong
et al., 2006) or sequential approach (Míguez, 2010; Binder et al.,
2001; Diehl et al., 2002; Assassa and Marquardt, 2014; Leppävuori
et al., 1020g). The sequential method is where the model equations
and objective function are calculated in successive evaluations.
In a sequential approach, the DAEs are solved independently of
the objective function. Each evaluation of the objective function
involves fixing the independent variables at current iteration val-
ues and solving the dynamic equations forward in time with a
shooting approach. It is referred to as a shooting method because
trial solutions are propagated forward in time and the resulting
dynamic trajectory is used to calculate the objective function. Suc-
cessive evaluations of the objective function are used to compute
gradients of the objective with respect to the decision variables

http://dx.doi.org/10.1016/j.compchemeng.2015.04.016
0098-1354/© 2015 Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.compchemeng.2015.04.016
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2015.04.016&domain=pdf
mailto:john.hedengren@byu.edu
dx.doi.org/10.1016/j.compchemeng.2015.04.016


40 S.M. Safdarnejad et al. / Computers and Chemical Engineering 78 (2015) 39–50

and drive towards an optimal solution. Terminating the optimiza-
tion progress before convergence typically produces a feasible yet
sub-optimal result. Sequential or shooting methods use forward
integrating solvers for differential equations with variable time
steps to maintain the integration accuracy. A number of solvers
or modeling platforms exist for solving ODE or DAE problems with
either sequential or simultaneous methods (Brenan et al., 1996;
Ascher and Petzold, 1998) such as DASSL (Petzold, 1982), SUNDI-
ALS (Hindmarsh et al., 2005), and many others (Cizniar et al., 2005;
Houska et al., 2011; Piela et al., 1991; Tummescheit et al., 2010;
Simon et al., 2009; Nagy et al., 2007).

Dynamic models can be translated into sets of algebraic
constraints that can be solved with standard gradient-based opti-
mization techniques. The differential terms can be translated
into algebraic equations through orthogonal collocation on finite
elements. Orthogonal collocation on finite elements allows a simul-
taneous solution where objective function and equations are solved
together instead of sequentially. Orthogonal collocation is sim-
ply a technique that relates differential terms to state values in
a discretized time horizon. This translation of DAEs into a set of
algebraic equations also allows capable linear programming (LP),
quadratic programming (QP), nonlinear programming (NLP), or
mixed-integer nonlinear programming (MINLP) solvers to optimize
these dynamic systems with a simultaneous approach instead of
shooting methods that rely on forward integrating simulators. Sim-
ilar approaches are used for ODEs, DAEs, PDEs, and Partial DAEs.
Large-scale problems such as PDEs or PDAEs with few decision
variables may  be best suited for analysis by a sequential or shoot-
ing method. Small or medium scale problems with many decision
variables or unstable systems are best suited for analysis with the
simultaneous approach. Dynamic problems can include continuous
or discrete variables that can be solved with MINLP solvers, have
multiple competing objectives, and require robust or stochastic
optimization methods to deal with uncertainty. Unlike sequential
approaches, terminating the optimization progress does not give a
feasible sub-optimal result. It is only at final convergence that the
equations are satisfied with the objective function at an optimal
value. The solvers and modeling platform used in this study are
embedded in the APMonitor Modeling Language and Optimization
Suite (Hedengren, 2015).

1.2. Standard DAE form

Dynamic modeling of physical systems involves several phases
starting with the selection of a model form. Dynamic model forms
may  be empirical where the form of the model is determined from
data, fundamental where the model parameters and equations are
derived from first principles, or hybrid with a mix  of empirical and
fundamental relationships. One advantage of using empirical mod-
els is that only inputs and outputs must be collected for the model
development and less must be known about the process in order to
develop a model. Fundamental models are often difficult to develop
because particular relationships can either be unknown or impos-
sible to isolate. In each case, the differential equations relate certain
process inputs (u) to differential states (x) or algebraic states (y).

The method taken in this work is to solve hybrid dynamic
process models in open-equation form with either differential
or algebraic equations while minimizing an objective function.
Differential equations are simply those that contain at least one
differential term and algebraic equations are those that do not.
Equations may  also consist of equality (=) or inequality (< or ≤)
constraints as shown in Eq. (1):

minuh(x, y, u) (1a)

Fig. 1. DAE model equations are discretized and solved over a time horizon.
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where Eq. (1b) is the set of DAE equality constraints and Eq. (1c) is
the set of DAE inequality constraints. For solvers that require only
equality constraints and simple inequality bounds on variables, the
inequality constraints are converted to an equality constraint with
the addition of a slack variable (Vu and Li, 2010). Equations need
not contain differential states, states variables, inputs, and outputs.
However, each equation must contain at least one differential or
algebraic state or output variable.

The inputs may  consist of parameters that are either known
from fundamental relationships or measured directly. There may
also be unknown parameters that can either be inferred from
other measurements or unknown parameters that are unobserv-
able given the available measurements. Other types of inputs may
be disturbances that affect the system that are either measured or
unmeasured. Finally, inputs also include those that can be changed
to optimize or control the system. These are referred to as design
variables or manipulated variables depending on whether it is a
design or control application. These parameters, disturbances, or
manipulated variables constitute the set of exogenous inputs that
change independently of the system dynamics and act on the sys-
tem to change the dynamic response.

Differential states are those variables that are calculated based
on differential equations while algebraic states are those variables
that do not appear as differential terms. Algebraic states may  be
either continuous or discontinuous while differential states are typ-
ically considered as continuous as shown in Fig. 1. For dynamic
simulation models there must be a unique equality constraint or
binding inequality constraint for each model state. If there are more
variables than equations (nvar ≥ neqn), the system has degrees of
freedom that can be arbitrarily adjusted to best meet one or more
objectives. If there are more equations than variables (neqn ≥ nvar),
the system may  be over-specified and there is likely no set of vari-
ables that can simultaneously satisfy all constraints.

1.3. DAE models with higher order derivatives

Equations that contain higher order derivatives can also be fit
into the standard form as shown in Eq. (1) by creating additional
variables for every higher order derivative. For example, accelera-
tion is equal to the second derivative of position as in a = d2x/dt2. By
adding the additional variable of velocity and an additional equa-
tion, the second order system becomes a set of two first order
differential equations as in a = dv/dt and v = dx/dt where a is accel-
eration, v is velocity, and x is position. A similar approach can be
used for any higher order derivatives. Initialization of higher order
derivative models requires an initial condition that is specified for
each differential variable.
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