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a  b  s  t  r  a  c  t

This  work  proposes  a novel  approach  for  the  offline  development  and  online  implementation  of  data-
driven  process  monitoring  (PM)  using  topological  preservation  techniques,  specifically  self-organizing
maps  (SOM).  Previous  topological  preservation  PM  applications  have  been  restricted  due to  the  lack  of
monitoring  and  diagnosis  tools.  In the  proposed  approach,  the  capabilities  of  SOM  are  further  extended
so  that all aspects  of PM  can  be performed  in  a  single  environment.  First  for  fault  detection,  using  SOM’s
vector  quantization  abilities,  an SOM-based  Gaussian  mixture  model  (GMM)  is  proposed  to  define  the
normal  region.  For  identification,  an  SOM-based  contribution  plot  is  proposed  to identify  the variables
most  responsible  for  the  fault.  This  is done  by  analyzing  the  residual  of  the  faulty point  and  an  SOM  model
of  the  normal  region  used  in fault  detection.  The  data  points  are  projected  on the  model  by  locating  the
best  matching  unit  (BMU)  of  the  point.  Finally,  for fault  diagnosis  a  procedure  is  formulated  involving  the
concept  of  multiple  self-organizing  maps  (MSOM),  creating  a map  for each  fault.  This  allows  the  ability
to include  new  faults  without  directly  affecting  previously  characterized  faults.  A Tennessee  Eastman
Process  (TEP)  application  is performed  on  dynamic  faults  such  as  random  variations,  sticky  valves  and
a slow  drift  in  kinetics.  Previous  studies  of the  TEP  have  considered  particular  feed-step-change  faults.
Results  indicate  an  excellent  performance  when  compared  to  linear  and  nonlinear  distance  preservation
techniques  and  standard  nonlinear  SOM  approaches  in  fault  diagnosis  and  identification.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Modern process monitoring is marked by the extensive use of
advanced computer systems and large numbers of sensors to deter-
mine if a plant is operating in a safe state and to detect when
a problem occurs. Identifying these states can be difficult due to
the large number of variables measured, but data driven methods
offer ways to quickly and efficiently extract useful information from
large data sets common in process industries. Improved process
monitoring can minimize downtime, increase safety, reduce man-
ufacturing costs, and improve performance, which all contribute to
safer and more profitable operations.

Process monitoring tasks include fault detection, fault iden-
tification, fault diagnosis, and process recovery. Fault detection
recognizes a deviation from the normal operating regime from pro-
cess measurements. Fault identification can help personnel identify
the fault by finding the measured variables most related to the fault.
Fault diagnosis determines the root causes of the fault and process
recovery is the manual correction for the effect of the fault.
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The essence of process monitoring is to quantify the process
with measures that are sensitive and robust to faults. Measures to
aid in process monitoring have been divided into three categories:
knowledge-based, analytical, and data-driven methods (Chiang
et al., 2001). Analytical methods create a prediction of the process
with a model often derived from first principles. Knowledge-based
methods are mostly based on causality and expert systems. Most
applications of these systems are for small inputs-outputs systems.
For large-scale systems, these techniques require a detailed model
or a large amount of knowledge. Data-driven methods are derived
directly from process data without using any underlying laws.

Among the data driven methods, self-organizing maps (SOMs),
also known as Kohonen Networks (Kohonen, 2001), are a type of
neural network used to visualize complicated, high-dimensional
data. SOM has been previously applied to chemical process data
analysis with success. Deventer et al. (1996) used SOM in tan-
dem with textural analysis for monitoring of a mineral flotation
process. Jamsa-Jounela et al. (2003) utilizes SOM to detect several
faults in a smelter and an online tool to assist in its implementa-
tion. Garcıa and Gonzalez (2004) used SOM and k-means clustering
for system state estimation and monitoring with an application to
a wastewater treatment plant. Ng and Srinivasan (2008a) and Ng
and Srinivasan (2008b) created an effective training strategy using
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SOM for multistate operations in addition to a sequence compar-
ison algorithm with applications to a lab scale distillation unit, a
refinery hydrocracker, and the Tennessee Eastman Process. They
also resample the training data in order to achieve an equal rep-
resentation of the different operating regimes. Corona et al. (2010)
and Corona et al. (2012) applied SOM to the classification of differ-
ent operating regimes of an industrial deethanizer and included a
method to consider quality specifications. Throughout these appli-
cations, the use of SOM’s visualization tools was a key advantage in
the analysis over other process monitoring techniques.

Distance-preservation fault-detection techniques, including
principal component analysis (PCA), have previously been applied
to the Tennessee Eastman Process with great success. The ease
with which training data can be generated using the Tennessee
Eastman Process has allowed it to become the benchmark for any
new process monitoring scheme. Raich and Cinar (1996) demon-
strated the use of standard PCA for fault detection and diagnosis
on the Tennessee Eastman Process. Zhu et al. (2011) applied an
ensemble clustering method based on a dynamic PCA-ICA model to
label process transitions to the TEP and achieve transition process
monitoring using PCA based dimensionality reduction. A thorough
treatment of PCA and other statistical techniques to the Tennessee
Eastman Process is presented in Chiang et al. (2001). A compar-
ison of these standard techniques applied to TEP can be found
in Yin et al. (2012). Wang and He (2010) created an alternative
approach that monitors the statistics generated from the variance
and covariance of process variable statistics. Previous applications
of linear data-driven techniques to the TEP have included detec-
tion, identification, and diagnosis rates. These previous works may
be limited by the use of distance preservation techniques and are
more applicable to step changes faults. Nonlinear techniques have
been explored as well, some based on linear counterparts. Kramer
(1991) and Dong and McAvoy (1996) explored a nonlinear exten-
sion of PCA using feedforeward neural networks for dimensionality
reduction. Several other nonlinear process monitoring techniques
are explored in Zhang (2009), including a kernel based nonlinear
extension of PCA and ICA. Some researchers have applied SOMs
nonlinear topological-preservation features to the TEP. Chen and
Yan (2012, 2013) improved the performance of their SOM algo-
rithm using two linear dimensionality reduction techniques, CCA
and FDA. Gu et al. (2004) presented the visualization of several step
faults in the Tennessee Eastman Process. These works include mul-
tiple step faults on a single map. They have not included a method
of fault identification and were not applied to faults with any time
dependency.

This work proposes a novel SOM-based framework for the
offline development and online implementation of data-driven
process monitoring schemes. One of the main advantages of lin-
ear projections tools such as PCA is its simplicity and the range of
tools it provides which covers all three PM tasks of fault detection,
identification and diagnosis. Our intention is to develop a nonlinear
(topological preservation) approach that will mimic  PCA by defin-
ing similar measures for process monitoring and fault detection and
diagnosis. Here, SOMs are extended to aiding all aspects of process
monitoring and the fault diagnosis is performed in a more flexible
way. Specifically, for fault detection, using SOM’s vector quanti-
zation abilities a SOM-based Gaussian mixture model (GMM)  is
proposed to define the normal region. For identification, an SOM-
based contribution plot is proposed to identify the variables most
responsible for the fault by analysing the residual of the faulty point
and the SOM model of the normal region used in fault detection.
The data points are projected on the model by locating the best
matching unit (BMU) of the point. Previous topological preserva-
tion applications in PM use a single SOM (1-SOM) for all process
operating regimes. This presents challenges when a new state is
encountered because the map  must be trained again to monitor for

the new condition. In the proposed approach, fault diagnosis is done
by creating a map  for each fault, known as MSOM.  This allows the
ability to include new faults without directly affecting previously
characterized faults.

The proposed methodology is applied to the Tennessee Eastman
Process (TEP). Previous studies of the TEP have considered partic-
ular step-change faults where the root causes of the disturbance
are generally limited to one variable. Here, in order to fully utilize
SOM’s nonlinear topology preservation features, a focus on ana-
lyzing more challenging faults such as random variations, sticky
valves and slow drift in kinetics is included to effectively illus-
trate the advantage afforded by SOM. Implementing the proposed
methodology indicates that MSOM is able to improve upon linear
distance preservation techniques such as PCA as well as nonlinear
approaches like NLPCA and more standard SOM based approach to
process monitoring tasks.

2. Background

In this section the data-driven techniques utilized in this work
are introduced. A brief overview of PCA approaches to process mon-
itoring, SOM, and SOM visualization tools and other advantages.

2.1. Principal component analysis in process monitoring

Principal component analysis (PCA) is a linear distance-
preservation technique which determines a set of orthogonal
vectors which optimally capture the variability of the data in order
of the variance explained in the loading vector directions (Chiang
et al., 2001). Given a set of n observations and m process variables
in the n × m matrix X with covariance S, the loading vectors are
determined from an eigenvalue decomposition of S:

S = 1
n − 1

XT X = V�VT (1)

where � is the diagonal matrix containing the non-negative real
eigenvalues of the covariance matrix in order of decreasing mag-
nitude, and V holds their corresponding eigenvectors. In order to
reduce the misclassification rate, it is often desirable to remove
directions that may  contain little useful information or simple sta-
tistical noise. In PCA this is achieved by selecting the columns of
the loading matrix which correspond to the largest eigenvalues
P ∈ Rm×a. The projections of the observations in X into the lower
dimensional space, also known as the scores, can be found from:

T = XP (2)

PCA process monitoring can also be performed using multi-model
PCA (MPCA or PCAm) as described in Chiang et al. (2001). Using
the lower dimensional representation calculated in Eq. (2), the
Hotelling’s T2 statistic is calculated for each observation and for
each class’s PCA model. The algorithm classifies the new observa-
tion into the class whose PCA model has the smallest T2 statistic.
For a full discussion of PCA and MPCA based process monitoring,
the reader is directed to Chiang et al. (2001).

Extending linear PCA, nonlinear PCA (NLPCA) has also been pro-
posed by Kramer (1991) and Dong and McAvoy (1996). A critical
result for NLPCA is the proof by Cybenko (1989) that arbitrary deci-
sion regions can be well approximated by continuous feedforward
neural networks with only one hidden layer and continuous sig-
moidal nonlinearity. Like linear PCA, NLPCA seeks to remove noise
variables and weight statistically important variables in the detec-
tion and diagnosis of faults. While PCA uses multivariate statistics,
NLPCA performs the reduction in dimensionality using a feedfor-
ward neural network. The neural network consists of a mapping
or “bottleneck” layer, which reduces the input data to the intrin-
sic dimension, and a de-mapping that, can reconstruct the original
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