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a  b  s  t  r  a  c  t

This  paper  presents  the  development  of an  electrochemical  model  that  can be implemented  into  automo-
tive battery  management  systems  (BMSs).  Compared  with  empirical  models,  the  electrochemical  model
features more  accurate  state  estimates  over  a  broader  and  longer  use  of  the  battery.  In  this  work,  model
implementation  schemes  are  devised  to  make  the  electrochemical  model  uncomplicated  enough  to  be
embedded  into  the  BMS.  A nonlinear  system  of partial  differential  equations  in  the  model  is discretized
into  a linearized  system  of algebraic  equations  (AEs).  A  solver  selected  to evaluate  the  resulting  system  of
AEs is  modified  for its application  to  the  BMS.  As  the  BMS  is preoccupied  by its  existing  tasks,  the  refor-
mulated  equations  and  optimized  solver  are  reorganized  such  that  the  limited  computational  resources
of the  BMS  are  appropriately  exploited.  The  electrochemical  model  is  consequently  implemented  into
the  BMS,  predicting  battery  behaviors  in  1 s intervals  while  occupying  a 14  kB RAM.

©  2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

A battery management system (BMS) is an electronic control
unit that is specifically designed to ensure that a battery is run
within its safe operating area normally bound by the applied cur-
rent, state-of-charge (SOC), and temperature. For this purpose, a
BMS  is required to fulfill the functions such as measurement, man-
agement, evaluation, communication, and logging. A BMS  measures
the current, voltage, and temperature from a battery. A BMS  typ-
ically manages a battery by preventing the cells from the usage
out of their safe operating area and balancing the cells by bringing
all the cells to the same SOC. A BMS  also calculates or estimates
the internal states of a battery, which includes SOC, resistance, and
state-of-health (SOH) (Andrea, 2010; Lu et al., 2012). To be more
specific, SOC denotes the residual capacity with respect to the rated
capacity, while SOH most often refers to the rated capacity with
respect to the nominal capacity, despite it is usually defined dif-
ferently. In addition, a BMS  interfaces with other electronic control
units running not only in-vehicle but also on-the-grid to provide
the information about a battery.

Along with such diverse functions of a BMS, the evaluation of
the internal states of a battery is particularly important in the
electric vehicle (EV) applications. A lithium-ion battery (LIB) is
typically used in EVs, because wider operating conditions with
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longer lifetime are required for the EV applications than the other
applications. In practice, the automotive BMS  is in service depend-
ing only on the direct measurements of the current, voltage, and
temperature. These limited quantities about a battery hinder the
automotive BMS  from estimating the internal states of the battery
such as the SOC and SOH. The automotive BMS  is thus required
to embed a battery model that can describe battery dynamics, for
example, predicting the output voltage in response to the input cur-
rent and temperature across diverse operating conditions, which is
a basis for the state estimation. Due to these reasons, conventional
BMSs favor empirical models which usually make use of an equiv-
alent circuit built in combination with resistance and capacitance
elements to mimic  battery dynamics. An equivalent circuit model
(ECM) is easy to handle and can match battery behaviors well par-
ticularly at near-equilibrium (Plett, 2004a,b; Liaw et al., 2004; Chen
and Rincon-Mora, 2006; Hu et al., 2012). The ECM can also reason-
ably estimate the SOC of a battery at equilibrium (Plett, 2004a,b;
Verbrugge and Koch, 2006). However, the ECM has limited appli-
cability to the operating conditions far from equilibrium wherein
EVs usually function with extensive and transient changes in the
applied current, SOC, and temperature. To extend the usefulness
of the ECM, resistance and capacitance elements should be fur-
ther supplemented; however, this solution could rather undermine
much of the ECM’s own benefits.

Instead of the ECM, an advanced BMS  tends to feature an
electrochemical model which is physically justified, expecting pos-
sible advances in more accurate state estimates over a broader
and longer use of a battery, for instance, when a battery is
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Fig. 1. A series of model implementation schemes. The equation reformulation in
cooperation with the solver optimization is devised to embed the model into the
BMS, despite its acute shortage of computational resources for the model simulation.

driven far from equilibrium during its entire lifetime (Smith,
2010; Chaturvedi et al., 2010; Rahimian et al., 2011; Moura et al.,
2012). The electrochemical model is derived from the porous elec-
trode and concentrated solution theories fundamentally based on
thermodynamics, kinetics, and transport phenomena. The elec-
trochemical model is represented by coupled nonlinear partial
differential equations (PDEs) in spatiotemporal coordinates, con-
cerning the conservations of mass and charge in the solid and
liquid-phases, respectively, and by Butler–Volmer kinetic expres-
sion (Newman and Thomas-Aleya, 2004; Thomas et al., 2002;
Newman and Tiedemann, 1975; De Vidts and White, 1997; Wang
et al., 1998). The electrochemical model is typically solved numer-
ically (Botte et al., 2000). However, this computation should be
extremely prohibitive, particularly considering its implementa-
tion into a computationally inexpensive BMS  (Subramanian et al.,
2007, 2009). Similar to typical embedded systems (Barr and Massa,
2006), the computational resources of the BMS  used in this work
only include a 16-bit processor with an on-chip 50 kB run-time
memory with no floating-point unit (FPU), which should be vastly
insufficient for running a numerical solver to evaluate the coupled
nonlinear PDEs of the model in a timely fashion even with a high
degree of accuracy.

In order to overcome such difficulties, as illustrated in Fig. 1,
the governing PDEs in the model are required to be efficiently
reformulated, while a solver is expected to be highly optimized,
both for implementing the model into the BMS. This study aims at
developing and demonstrating the electrochemical model that can
be embedded into the automotive BMS, with a specific emphasis
on devising the model implementation schemes primarily includ-
ing solver optimization. To achieve this goal, an original system
of ten PDEs in the model is spatiotemporally discretized into a lin-
earized system of 41 algebraic equations (AEs), seeking for reducing
the model complexity while almost uncompromising the model

accuracy. For this model reformulation, the spatiotemporal dis-
cretization methods suggested by Ramadesigan et al. (2010) and
Northrop et al. (2011) are generally adopted. To solve the result-
ing system of AEs, CSparse, a free library implementing a number
of direct methods for sparse linear systems (Davis, 2006), is duly
selected and then extensively modified, aiming at maximizing exe-
cution speed while minimizing memory footprint. For this solver
optimization, preprocessing as well as dynamic memory allocation
is effectively performed along with the other schemes. Afterwards,
for embedding the model into the BMS  which is already consumed
by the existing BMS  tasks, the reformulated equations as well as the
optimized solver are again partly altered such that the limited com-
putational resources of the BMS  can be shared with many existing
BMS  tasks.

In this work, the implementation schemes of the electrochem-
ical model into the BMS  are developed to realize the benefits of
the electrochemical model. The complex electrochemical model
provides more precise and various state estimates than the other
simple models. The electrochemical model can be utilized for a
broader and longer operation of the battery for the EV applica-
tions. The model implementation schemes include the equation
reformulation along with a solver optimization to make it possible
for this heavy model to be implemented into the computation-
ally light BMS. This work is closely related to the previous papers
(Ramadesigan et al., 2010; Northrop et al., 2011) which provide a
rich background specifically in terms of reformulating the equa-
tions in the electrochemical model. In contrast to these papers, this
work is novel in the optimization of the solver to compute the refor-
mulated equations by using the limited computational resources
of the BMS. Based on the literature reports, this work is the first
that gives a detailed account of the model implementation schemes
proven to be applicable to the automotive BMS.

2. Model formulation

2.1. Electrochemical model

The electrochemical model of an LIB is described separately in
Appendix for the sake of brevity. Instead, as shown in Fig. 2, the gen-
eral feature of the electrochemical model is schematically depicted,
underlining its variables: the dependent variables such as electric
potential ϕ, Li(-ion) concentration c, and the molar flux of Li at the
surface of the spherical active material particle j, which are par-
tially differentiated by the independent variables such as spatial
macroscale x coupled with microscale r, and temporal t.

2.2. Model reformulation

The electrochemical model, in the form of a coupled nonlinear
system of PDEs, is to be solved numerically. As part of numer-
ical solutions, spatial discretization can be performed using the
finite difference or weighted residual methods, thereby reducing
the model order from a system of PDEs down to a system of differ-
ential algebraic equations (DAEs).

For the first independent variable, spatial x, on which most
of the dependent variables ce, ϕs, and ϕe depend, the orthogonal
collocation method is chosen (Northrop et al., 2011). Prior to dis-
cretizing the governing equations for ce, ϕs, and ϕe, their coordinate
is transformed, as described in Fig. 3. The original coordinate in
the model has three regions defined in terms of x; positive elec-
trode, separator, and negative electrode span [0, lp], [lp, lp + ls], and
[lp + ls, lp + ls + ln], respectively. Through the coordinate transforma-
tion, each region is normalized to [0, 1] and commonly defined with
respect to a dummy  variable X. For example, the governing equa-
tion for the liquid-phase Li-ion concentration (Eq. (A.12)) in the
positive electrode is transformed as:
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