G Model CACE-4982; No. of Pages 16

ARTICLE IN PRESS

Computers and Chemical Engineering xxx (2014) xxx-xxx

Contents lists available at ScienceDirect

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/compchemeng

Supply chain planning and scheduling integration using Lagrangian decomposition in a knowledge management environment

Edrisi Muñoz^a, Elisabet Capón-García^b, José M. Laínez-Aguirre^c, Antonio Espuña^d, Luis Puigjaner^{d,*}

- ^a Centro de Investigación en Matemáticas A.C., Jalisco S/N, Mineral y Valenciana, 36240 Guanajuato, Mexico
- b Department of Chemistry and Applied Biosciences, ETH Zürich, Wolfgang-Pauli-Str. 10, 8093 Zürich, Switzerland
- ^c School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
- d Department of Chemical Engineering, Universitat Politècnica de Catalunya, ETSEIB, Avda. Diagonal, 647, E-08028 Barcelona, Spain

ARTICLE INFO

Article history: Received 23 January 2014 Received in revised form 2 June 2014 Accepted 3 June 2014 Available online xxx

Keywords: Supply chain planning Process scheduling Ontology Decision-levels integration Lagrangian decomposition

ABSTRACT

The integration of planning and scheduling decisions in rigorous mathematical models usually results in large scale problems. In order to tackle the problem complexity, decomposition techniques based on duality and information flows between a master and a set of subproblems are widely applied. In this sense, ontologies improve information sharing and communication in enterprises and can even represent holistic mathematical models facilitating the use of analytic tools and providing higher flexibility for model building. In this work, we exploit this ontologies' capability to address the optimal integration of planning and scheduling using a Lagrangian decomposition approach. Scheduling/planning sub-problems are created for each facility/supply chain entity and their dual solution information is shared by means of the ontological framework. Two case studies based on a STN representation of supply chain planning and scheduling models are presented to emphasize the advantages and limitations of the proposed approach.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Enterprise supply chain (SC) management encompasses the whole set of activities which aim at the control of material, financial and information flows among raw material suppliers, production sites, distribution centers, retailers, and final customers. The performance of SCs results from the synchronization of the previous flows which is based on mass balances, SC capacity and technological constraints, budget limitations, suppliers' capacity, market demand and competition, and customer satisfaction requirements among others, so as to achieve corporate goals efficiently.

In order to deal with this problem complexity, it is necessary to decouple the system across a hierarchy of appropriately chosen levels without disregarding the interrelationships that exist among them. Indeed, in the integrated SC planning problem, several dimensions may be identified, namely geographical distribution, hierarchical levels, and business functionalities (Stephanopoulos and Reklaitis, 2011). From a functional perspective, the enterprise has been traditionally divided in three basic decision levels:

 $http://dx.doi.org/10.1016/j.compchemeng.2014.06.002\\0098-1354/@\ 2014\ Elsevier\ Ltd.\ All\ rights\ reserved.$

strategic, tactical and operational. Long-term strategic level defines the business scope by determining the structure of the SC in a planning horizon of years. Medium-term tactical planning is concerned with decisions such as the assignment of production targets to facilities and the distribution from facilities to market places. The operational level is related to short-term planning or scheduling which determines on a daily or weekly basis the assignment of tasks to equipment units and the sequencing of tasks in each of them. The aforementioned functional decision levels have different space and time scales, but they are intrinsically related to each other since the decisions made at one level directly affect others. According to Shobrys and White (2002), companies pursuing integration among the different decision levels in production management environments report substantial economic benefits.

In the chemical process industry, two key methodological components of SC management are scheduling and planning technologies. The latter function focuses on the creation of the production, distribution, sales and inventory plans based on customer and market information while observing all relevant process constraints. In particular, operational plans are aimed to structure future production, distribution and other related activities to reach the business objectives (Kallrath, 2005; Shah, 2005). According to Kallrath (2002), most of planning problems in the process

Please cite this article in press as: Muñoz E, et al. Supply chain planning and scheduling integration using Lagrangian decomposition in a knowledge management environment. Computers and Chemical Engineering (2014), http://dx.doi.org/10.1016/j.compchemeng.2014.06.002

^{*} Corresponding author. Tel.: +34 934 016 678; fax: +34 934 010 979. E-mail address: luis.puigjaner@upc.edu (L. Puigjaner).

E. Muñoz et al. / Computers and Chemical Engineering xxx (2014) xxx-xxx

Notation Indices suppliers е facility locations f, f'i tasks technologies k iterations of the Lagrangian decomposition materials (states) S t, t' planning periods Sets set of suppliers *e* that provide raw materials E_{rm} set of suppliers *e* that provide production services \tilde{E}_{prod} \overline{E}_{tr} set of suppliers e that provide transportation ser- FP_s set of materials s that are final products Ī set of tasks *i* with variable input set of tasks i that can be performed in technology jÍSs set of states s that are intermediate states \tilde{J}_f technology *j* that is installed at location *f* Ĵi technologies that can perform task i set of tasks i producing material s K_{is} \overline{K}_{is} set of tasks *i* consuming material *s* set of market locations *f* Mk_f set of production, or non-transport, tasks NTr_i set of production facilities f Pr_f RM_S set of materials s that are raw materials set of supplier locations *f* Sup_f Tr_i set of distribution tasks i **Parameters** B_i^{MIN} , B_i^{MAX} lower/upper bounds on the batch size of task i CP_{sn} storage capacity for state s at time event nDem_{sft} demand of product s at market f in period tFCFJ_{ift} fixed cost per unit of technology j capacity at location f in period t fixed processing time of process stage i fixt_i h_t^{period} hours in period t Ĥ big number NMk total number of markets $Price_{sft}$ price of product s at market f in period t SF_{ij} size factor of task *i* performed in equipment *j* vart_i batch size-variable processing time of process stage Greek symbols mass fraction of material s produced in task i in $\hat{\alpha}_{sij}$ equipment *j* mass fraction of material s for consumption in task $\overline{\alpha}_{sii}$ *i* in equipment *j* $\hat{\beta}_{if}$ minimum utilization rate of technology *j* capacity that is allowed at location *f* θ_{ijff}^f fixed capacity utilization rate of technology *j* by task *i* whose origin is location *f* and destination location variable capacity utilization rate of technology j by θ_{iiff}^{ν} task i whose origin is location f and destination location f unitary transportation costs from location f to loca- $\hat{\rho}_{eff't}^{tr}$ tion f during period tLagrangian multipliers for state s in facility f at time t in iteration k

κ	scalar for calculating the step in the Lagrangian decomposition
τ ^{ut 1} ijfet	unitary cost associated with task i performed in
2	equipment <i>j</i> from location <i>f</i> and payable to external supplier <i>e</i> during period <i>t</i>
$ au_{sfet}^{ut2}$	unitary cost associated with handling the inventory
sfet	of material s in location f and payable to external
	supplier <i>e</i> during period <i>t</i>
Xest	unitary cost of raw material s offered by external supplier e in period t
	ous variables
Bf_{fin}	batch size of task i finishing at or before time point n
Bp_{fin}	batch size of task i being processed at time point n
Bs_{fin}	batch size of task <i>i</i> starting at time point <i>n</i>
CT_f	cycle time
D_{fin}	processing time of task starting at time point <i>n</i> corresponding to stage <i>i</i>
EPurch _{et}	economic value of purchases executed in period t to supplier e
ESales _t	economic value of sales executed in period <i>t</i>
FCost _t	fixed cost in period <i>t</i>
F_{jft} [h]	total capacity of technology j during period t at location f
M_{sft}	amount of stock of material s at location f in period t
MS_{sn}	amount of state s available at time point n
$P_{ijff't}$	rate of activity <i>i</i> carried out in equipment <i>j</i> which is
	originated from location f and delivered to location f in period t
PD_{fs}	demand of state s at the end of the time horizon of the scheduling for facility f
Profit	total profit
Purch _{et}	
Purch ^{rm}	amount of money payable to supplier e in period t associated with consumption of raw materials
Purch ^{tr}	amount of money payable to supplier e in period t
1 011 011 01	associated with consumption of transport services
$Revenue_f^{SCH}$ revenue of production facility f	
	amount of product s sold from location f to location f in period t
ST_{fin}	starting time of activities i (starting of time point n
_	and ending of $n-1$) in facility f
T_{fn}	absolute time of time point n (starting of time point n and ending of $n-1$) in facility f
TE_{fi}	end time of the tasks at unit j in facility f
Tf_{fin}^{ss}	finishing time of task i that starts at time point n in facility f
Ts_{fin}	starting time of task i that starts at time point n in
IA/T	facility <i>f</i> waiting time of tack <i>i</i> at time point <i>n</i> in facility <i>f</i>
WT_{fin} Y_f	waiting time of task i at time point n in facility f frequency of the schedule (inverse of the number of
Z^{SC}	cycles in a year) in facility <i>f</i> objective function of the supply chain planning
	problem
Z_f^{SCH}	objective function of the scheduling problem of
7 overall	facility <i>f</i> objective function considering the whole supply
L	chain planning and scheduling

Please cite this article in press as: Muñoz E, et al. Supply chain planning and scheduling integration using Lagrangian decomposition in a knowledge management environment. Computers and Chemical Engineering (2014), http://dx.doi.org/10.1016/j.compchemeng.2014.06.002

Download English Version:

https://daneshyari.com/en/article/6595444

Download Persian Version:

https://daneshyari.com/article/6595444

<u>Daneshyari.com</u>