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a  b  s  t  r  a  c  t

In  Urselmann  et  al. (2011a,b)  we presented  a memetic  algorithm  (MA)  for the  design  optimization  of
reactive  distillation  columns.  The  MA  is a combination  of a problem-specific  evolutionary  algorithm
(EA)  that  optimizes  the design  variables  and  a  mathematical  programming  (MP)  method  that  solves  the
continuous  sub-problems  with  fixed  discrete  decisions  which  are  proposed  by  the EA to local  optimality.
In  comparison  to the  usual  superstructure  formulation,  the  search  space  of the MA  is  significantly  reduced
without  excluding  feasible  solutions.  The  algorithm  computes  many  different  local  optima  and  can  handle
structural  restrictions  and discontinuous  cost  functions.  In this  contribution,  a  systematic  procedure  to
modify  the  MA  to solve  more  complex  design  problems  is  described  and  demonstrated  using the  example
of a reactive  distillation  column  with  an optional  side-  or pre-reactor  with  structural  restrictions  on  the
number  of streams.  New  concepts  to  handle  connected  and  optional  unit  operations  are  proposed.

©  2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Chemical process synthesis in practice is usually done by a
team of chemists and engineers in a trial-and-error process based
on heuristics, experiences, and expert knowledge over quite long
periods of time. To reach the long-term profitability of the pro-
cess, decisions that have to be made are the choice of the chemical
production route, the choice of the pieces of equipment and of their
connections by flows of materials and the selection of the operating
conditions of the different units. The design alternatives proposed
by the experts are then validated by extensive numerical simula-
tion studies of detailed mathematical process models. The structure
of the chemical production process, i.e. the pieces of equipment
and their interconnections, is fixed before simulation is applied to
determine promising operating conditions and the state variables
of a few alternatives which are compared afterwards to define the
base case that is further developed in detail engineering.

In order to improve and to shorten this process, systematic
methods were developed to find the optimal design among all
suitable alternatives (see e.g. Biegler et al., 1997; Barnicki and
Siirola, 2004; Westerberg, 2004). The optimization-based meth-
ods (Grossmann, 1985; Yeomans and Grossmann, 1999) work on a
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so-called superstructure which is a representation of all structures
of the production process that seem promising and that should
be considered during the optimization. Usually a large monolithic
mixed-integer nonlinear model (MINLP) that comprises the math-
ematical models of the superstructure, the unit operations, the
restrictions, and the cost function is formulated in the following
form:

min  F = f (x, y, z) (1)

s.t. h(x, y, z) = 0 (2)

g(x, y, z) ≤ 0 (3)

x ∈ R, y ∈ R, z ∈ N0,

where F is the economic cost function, h(x, y, z) = 0 are the equa-
tions that describe the behavior of the processing system (mass
and heat balances, geometric relationships, etc.), and g(x, y, z) ≤ 0
are the inequalities that define the specifications or constraints for
feasible designs (Grossmann et al., 2000). The continuous variables
x denote the operating conditions, while the discrete variables z
represent structural design decisions. The state variables of the pro-
cess are given by the continuous variables y. The optimization of
the structure of the process and the operating conditions (z and
x are summarized by the term ‘design variables’) and the deter-
mination of the corresponding state variables y are usually done
simultaneously.
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The resulting MINLP are non-convex and can exhibit many local
optima. The MINLP-techniques which are usually applied for the
solution decompose the problem into a mixed-integer or integer
master problem (MIP/IP) to handle the structural decisions z and
continuous nonlinear sub-problems (NLP) to optimize the contin-
uous degrees of freedom (x and y) for fixed variables z.

Iterative methods as e.g. DICOPT (Jackson and Grossmann, 2001)
which is an implementation of the outer approximation method
(Duran and Grossmann, 1986; Fletcher and Leyffer, 1994) or GBD
(Ciric and Gu, 1994) which is based on the general Bender’s decom-
position (Geoffrion, 1972) compute lower bounds and optimize
the binary variables by solving a sequence of alternate NLP sub-
problems with fixed discrete variables. Extended Branch&Bound
methods (Borchers and Mitchell, 1992) solve the MILP master
problem by a tree search and solve an NLP sub-problem in each
node of the tree with fixed and/or relaxed discrete variables. The
solution of the NLP sub-problems is addressed by efficient math-
ematical programming methods as e.g. reduced gradient methods
(Murtagh and Saunders, 1982), sequential quadratic programming
(Schittkowski, 1981) or interior point methods. The Extended Cut-
ting Plane Method (Westerlund and Pettersson, 1995) applies
successive linearizations instead of solving the NLP subproblems.
Due to the non-convexity of the problems, the NLP solvers can-
not guarantee to find the global optimum (Grossmann et al., 2000).
They find local optima and possibly exclude the global optimum
from the search. The quality of the local solutions depends strongly
on the initialization of the search.

An increase of the number of discrete degrees of freedom leads
to an exponential increase in the size of the search space (Seferlis
and Grievink, 2001). If realistic unit operation models are used, the
resulting monolithic optimization model can often not be solved
by the state-of-the-art methods in reasonable computation times.
The complexity of the superstructure optimization model limits
the number of structural degrees of freedom that can be efficiently
optimized.

To overcome this problem, different approaches have been
proposed in the literature. Some of these methods reduce the com-
plexity of the optimization model by reducing the number of design
variables or of the design alternatives by including special model-
ing or decomposition techniques or by the application of iterative
procedures. A common approach is to avoid the explicit modeling
of the structural decisions of the process by discrete variables and
to use continuous variables that implicitly indicate the existence
of certain structures, e.g. when the continuous flow rate of a feed
stream that enters a distillation column on a certain stage is zero
this indicates that there is no feed stream in the actual design. The
scope of these techniques however is limited. If, e.g., the number
of certain elements (e.g. the number of feed streams that enter a
distillation column) is restricted, an explicit representation of the
structures cannot be avoided.

Stein et al. (2004) eliminate the discrete decision variables by
adding a set of continuous variables and constraints that repre-
sent the discrete decision space of the optimization problem. This
procedure was extended by Harwardt et al. (2011) and Kraemer
et al. (2009). The quality of the local solution found by the method
depends strongly on the initial values, this influence can be reduced
by the application of a sequential solution procedure that relaxes
the constraints that are introduced to force the continuous vari-
ables to integer values in the first step, and then tightens them
subsequently.

Lang and Biegler (2002) eliminate integer variables within the
design optimization of distillation columns with trays by the defi-
nition of a differentiable distribution function (DDF) in which the
placement of feed and side streams and the number of the trays
are represented by continuous variables. All feed and side streams
are mapped to all column trays by the DDF and then the distributed

flow rate of entry or exit streams are directed to a specific tray based
on the value of its DDF at that tray.

The solution methods described above finally lead to a local
solution of the MINLP that depends on the initialization.

Different multi-level approaches have also been success-
fully applied. Kravanja and Grossmann (1997), Daichendt and
Grossmann (1998) and Bedenik et al. (2004) decompose the origi-
nal problem according to the hierarchical decomposition procedure
proposed by Douglas (1988) by a multilevel tree search. For each
node of the tree, a reduced superstructure is optimized by MINLP
techniques.

Another approach is to use short-cut methods, heuristics or
expert knowledge (Skiborowski et al., 2012, 2013; Caballero et al.,
2009) or preliminary screening (Daichendt and Grossmann, 1994)
to reduce the number of alternatives that are considered during
the optimization and therefore the number of structural decisions
a priori.

Two-stage procedures of superstructure optimization with
reduced complexity were also successfully applied. In their work
on a general superstructure and a global optimization approach
for the design of integrated process water networks that is suit-
able for global NLP and MINLP, Ahmetović  and Grossmann (2011)
proposed a two-stage procedure for the solution of large-scale
industrial models. They first solve an NLP without binary variables
and without the corresponding constraints, where some of the
structures are represented implicitly by continuous variables. The
superstructure is then reduced by fixing variables that correspond
to continuous variables which were set to zero by the optimiza-
tion, and the reduced superstructure is optimized in the second
step. Barkmann et al. (2008) also applied a two-stage procedure
where some structures of the process are set to reasonable values
and are kept unchanged, while other structural decision variables
are optimized in the first step. The best values of the latter are then
fixed and the remaining discrete variables are optimized in a second
step.

In the approaches mentioned above, the reduction of the com-
plexity of the design problem may  lead to an exclusion of the
globally optimal solution from the search.

Other methods reduce the complexity of the process models by
the use of surrogate models (Henao and Maravelias, 2011; Shao
et al., 2007; Xiong et al., 2007; Won  and Ray, 2005).

An alternative approach is the formulation as a generalized dis-
junctive program (GDP) first introduced by Raman and Grossmann
(1994). The GDP formulation involves binary and continuous vari-
ables that are specified in algebraic constraint, disjunctions and
logic propositions. Logic-based methods can then be used to solve
the GDP. By this procedure the effort needed to optimize structural
decisions can be reduced and nonlinearities can be handled more
efficiently (Grossmann and Ruiz, 2012).

Besides the large scale of the models that arise from super-
structure optimization formulations with rigorous unit models, the
non-convexity of the solution set often leads to the existence of
many local optima that represent structurally different designs.
When local optimization is employed, the convergence to one of
these local optima can only be influenced by the initialization of the
search. Rigorous global optimization methods (Sahinidis, 1996b;
Floudas and Gounaris, 2009) can determine the global optimum,
but at the moment are not yet computationally feasible for large
problem sizes, although substantial progress was made in this area
in the last years (see e.g. the literature review in Misener and
Floudas (2013)).

Moreover, the knowledge of the set of all or at least of many
possible local optima is useful for the designers who use optimiza-
tion to explore the design space; e.g. to detect intervals of design
parameters which lead to very similar economic results so that the
exact choice in this interval is not crucial.
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