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a  b  s  t r  a  c  t

The  mixed  integer  polynomial  programming  problem  is  reformulated  as  a  multi-parametric  program-
ming  problem  by relaxing  integer  variables  as  continuous  variables  and  then  treating  them  as  parameters.
The  optimality  conditions  for  the  resulting  parametric  programming  problem  are  given  by a  set  of  simul-
taneous  parametric  polynomial  equations  which  are solved  analytically  to give  the  parametric  optimal
solution  as a function  of the  relaxed  integer  variables.  Evaluation  of  the  parametric  optimal  solution  for
integer  variables  fixed  at their  integer  values  followed  by  screening  of  the  evaluated  solutions  gives the
optimal  solutions.
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1. Introduction

Mathematical modelling and model-based optimization of
chemical process systems have great potential for providing
answers on how to optimally design and operate these systems.
One key difficulty in not being able to fully exploit this potential is
the presence of nonlinear terms in the mathematical models. This
issue is further exacerbated when the model also includes integer
variables, for incorporating structural choices. A generic formu-
lation of such mathematical programming problems is given by
mixed integer nonlinear programmes (MINLP) (Grossmann, 2002):

Problem P1 :

z1 = min
x,y

f (x, y)

subject to : h(x, y) = 0

g(x, y) ≤ 0

x ∈ �nx

y ∈ {0, 1}ny

where x is a vector of continuous variables, y is a vector of binary
variables, h is an nh dimensional vector of equality constraints, g
is an ng dimensional vector of inequality constraints and f is the
scalar objective function. Synthesis of chemical process flowsheets
and design of materials are two typical problems demonstrating the
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application of mathematical programmes simultaneously involv-
ing nonlinearities and integer variables (Dua and Pistikopoulos,
1998). For process synthesis problems, x represents continuously
varying quantities such as temperature, pressure, flowrates etc., y
is used to model structural decisions such as selection of appro-
priate processing units and inter-connections between the units
etc., f represents an objective function such as cost or environmen-
tal impact to be optimized, h represents conservation equations
i.e. mass and energy balances and g represents constraints on
quantities such as lowest acceptable purity and highest allowable
safe operating temperatures and pressures. For material design
problems x represents material properties, y models selection of
constituent molecular groups, f represents deviation from desired
property values, h represents property prediction correlations and
g represents lower and upper bounds on values of the material
properties. Note that this approach for material design problems is
based upon matching property targets but other formulations for
such problems also exist in the literature.

Solving P1 is NP-hard and has created huge interest for devel-
oping computationally efficient algorithms for obtaining solution
of P1. New theoretical developments for solving P1 have pushed
the boundaries of application of P1 to many areas in engineer-
ing and science. Several software tools are available to solve these
problems, DICOPT (Viswanathan and Grossmann, 1990), MINOPT
(MINOPT, 1998), BARON (Sahinidis, 1996), GloMIQO (Misener and
Floudas, 2013), Alpha-ECP (Westerlund and Lundqvist, 2005) – to
name a few. The reader is referred to recent survey papers by
Belotti et al. (2013) and D’Ambrosio and Lodi (2011) presenting
an overview of advances for solving P1 and the books (Biegler et al.,
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1997; Floudas, 1995; Nemhauser and Wolsey, 1988) for an intro-
duction to the topic.

Gueddar and Dua (2012) reformulated P1 as a multi-parametric
nonlinear programme (mp-NLP) by first relaxing y as continuous
variables and then treating y as parameters. An approximate solu-
tion of the mp-NLP is obtained and that solution is then used to
estimate the solution at the terminal nodes of the Branch and Bound
(B&B) tree and guide the search in the tree; integer variables are the
branching variables in the tree. For details of multi-parametric pro-
gramming the reader is referred to Dua and Pistikopoulos (1999),
Pistikopoulos et al. (2007a,b), Pistikopoulos (2009) and Wittmann-
Hohlbein and Pistikopoulos (2014).

In this work, the case when f, h and g are polynomial func-
tions is considered, problem P1 therefore becomes a Mixed Integer
Polynomial Optimization (MIPOPT) problem. Patil et al. (2012) pre-
sented a Bernstein polynomial approach for solving such problems.
Teles et al. (2013) proposed a discretization approach using bilin-
ear terms as the building block. In this work, the integer variables,
y, are relaxed as continuous variables and then treated as parame-
ters resulting in a multi-parametric polynomial programme (mp3).
An exact solution of the resulting mp3  can be obtained by exact
multi-parametric nonlinear inversion of the optimality conditions,
see for example Fotiou et al. (2007). The proposed approach hence
does not require approximate solution of the mp-NLP followed by
a tree search as in Gueddar and Dua (2012).

In the next section polynomial programming is introduced
and an example for exact solution of polynomial programmes
is presented. An algorithm for solving MIPOPT based upon mp3
reformulation is proposed in Section 3 and in Section 4 illustra-
tive examples are presented. A discussion of results and concluding
remarks are provided in Section 5.

2. Polynomial programming

Consider the following nonlinear programming (NLP) problem:

Problem P2 :

z2 = min
x

f (x)

subject to : h(x) = 0

g(x) ≤ 0

x  ∈ �nx

Descent or similar algorithms for computing solution of P2 are
based upon an iterative strategy where the solution obtained at
an iteration verifies Fritz–John (FJ) or Karush–Kuhn–Tucker (KKT)
conditions (Bazaraa et al., 1993), in this work the KKT conditions
are considered, as follows.

KKT conditions :

(a) Equality constraints :

∇xL(x, �, �) = 0

h(x) = 0

�jgj(x) = 0, j = 1, . . .,  ng

(b) Inequality constraints :

g(x) ≤ 0

�j≥0, j = 1, . . .,  ng

where

L(x, �, �) = f (x) +
nh∑
i=1

�ihi(x) +
ng∑
j=1

�jgj(x)

is the Lagrangian function.

Fig. 1. Example 1, plot of the objective function, f, as a function of x1 and x2.

The equality constraints in the KKT conditions are nx + nh + ng

dimensional and the vector of variables, [x, �, �], is also nx + nh + ng

dimensional. For generic nonlinear functions solution of equality
constraints is usually obtained by employing a numerical tech-
nique, such as Newton’s method. The solution of the equality
constraints obtained is verified by checking whether it satisfies the
inequality constraints in the KKT conditions. Considering a special
case when f, g and h in the NLP are polynomial, a set of equations
polynomial in [x, �, �] is obtained. These polynomial equations can
be solved analytically, at least in theory, to obtain a closed form
solution which includes all the solutions (Hägglöf et al., 1995). This
can be achieved by using the theory of Gröbner Bases where the
Buchberger algorithm can be used to transform the set of polyno-
mial equations into a triangular system of equations (Buchberger
and Winkler, 1998). The triangular system is the nonlinear poly-
nomial equivalent of the triangular system obtained by Gaussian
elimination for a linear system of equations. The computational
complexity of this method grows exponentially with the number
of variables, but it is an active area of research with various devel-
opments including parallel computing to improve computational
speed. There are softwares for symbolic manipulations such as
Mathematica (Wolfram Research, 2013) that can analytically solve
systems of polynomial equations, which in our case is given by the
equality constraints in the KKT conditions. The set of solutions thus
obtained can then be checked to see if they satisfy the inequality
constraints in the KKT conditions. Further screening tests are also
carried out, i.e., whether complementary slackness (CS) and con-
straints qualification (CQ) conditions are met  is checked. In this
paper linear independence constraint qualification (LICQ) was used
for checking the CQ condition. Consider the following illustrative
example for demonstrating the basic idea.

Example 1 : Polynomial programming

min
x

f (x) = 5x2
1 + 9x2

2 − 8x1x2

subject to :

g1(x) = 2 − x1x2 ≤ 0

g2(x) = −3 + x1x2 ≤ 0

g3(x) = −5 + x1 ≤ 0

g4(x) = −5 − x1 ≤ 0

The objective function is plotted as a function of x1 and x2 in
Fig. 1 and the feasible region is given by the shaded area in Fig. 2.
The two optimal solutions are also shown in Fig. 2.
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