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a  b  s  t  r  a  c  t

In this  short  note,  the  recently  popular  modifier-adaptation  framework  for  real-time  optimization  is dis-
cussed  in tandem  with  the  well-developed  trust-region  framework  of  numerical  optimization,  and  it is
shown  that  the  basic  version  of  the  former  is  a simplification  of  the  latter  when  the  problem  is  uncon-
strained. This  relation  is  then  exploited  to propose  a  globally  convergent  modifier-adaptation  algorithm
using  already  developed  trust-region  theory.  Cases  when  the  two  may  not  be  equivalent  and  extensions
to  constrained  problems  are also  discussed.
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1. The real-time optimization problem

In the process systems engineering community, the basic idea of
most real-time optimization (RTO) schemes consists in finding a set
of optimal operating conditions – often steady-state setpoints in a
multilayer hierarchical scheme – that minimize (resp., maximize)
the steady-state cost (resp., profit) of some given plant subject to
constraints (Brdys and Tatjewski, 2005). While models of the pro-
cess being optimized are often available, it is generally the case that
they are either inaccurate and/or incomplete, which motivates the
data-driven “real-time” element of RTO, thereby forcing the opti-
mization algorithm to use the measurements obtained from the
process as feedback to modify the provided setpoints so as to ulti-
mately reject the model uncertainty and converge to the optimal
conditions of the plant.

A fairly general mathematical formulation of this problem that
suffices for many practical cases is as follows:

minimize
u

�p(u)

subject to gp,j(u) ≤ 0, j = 1, . . .,  ng,
(1)

where u ∈ R
nu denote the decision variables, or the “inputs”, of the

problem, while the functions �, g : R
nu → R  denote the cost and

constraints, respectively. The subscript p (for “plant”) is used to
indicate that the function corresponds to an experimental relation-
ship that is not perfectly known and may  only be approximated by
a model, which we will mark with the subscript p̂ (e.g., �p̂ being
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the model approximation of �p). In the simplest terms, the goal of
an RTO algorithm is to solve Problem (1) by iterative experimenta-
tion, generating a sequence of steady-state u values that converges
to the plant optimum.

For the majority of this document, we will not focus on Problem
(1) but on the unconstrained case

minimize
u

�p(u), (2)

as this is sufficient to convey the main message. We  will, however,
return to Problem (1) in the end in passing, providing references to
works where it is discussed properly and in much greater detail.

2. Review of the modifier-adaptation framework

An approach to solving (1) that has recently gained popular-
ity in the research community is that of modifier adaptation,  which
originally dates back to the work of Roberts (1978) and owes its
numerous refinements and fundamental ideas to the ISOPE (“itera-
tive setpoint optimization and parameter estimation”) framework
(Brdys and Tatjewski, 2005). Recent works by Gao and Engell
(2005), Chachuat et al. (2009), and Marchetti et al. (2009) have
given the approach its modern form by accounting for plant-model
mismatch in both the cost and constraints. A number of works in
the past few years have also considered various particular aspects
of the framework, such as mathematical reformulations to ease
or better accommodate particular problem types (Franç ois and
Bonvin, 2013; Serralunga et al., 2013; Costello et al., 2013), impor-
tant implementation aspects (Marchetti et al., 2010; Rodger, 2010;
Bunin et al., 2012), and major theoretical issues like feasibility
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(Bunin et al., 2011; Navia et al., 2012) and global convergence
(Faulwasser and Bonvin, 2014).

The basic philosophy of modifier adaptation lies in applying
local corrections to an inherently incorrect model at each RTO iter-
ation k, and solving this corrected version to obtain the following
iterate at k + 1. For the unconstrained case, this would lead to the
following update:

uk+1 ∈ arg minimize
u

�p̂(u) + �T
k u, (3)

with the modifiers �k, defined as

�k := ∇�p(uk) − ∇�p̂(uk), (4)

serving to ensure that the plant and corrected model have matching
first derivatives at the current iterate uk.

Placing this into algorithmic form yields the following basic
implementation.

Algorithm 1 (Basic modifier-adaptation algorithm).

1. Initialization: The initial point, u0, is provided. Set k := 0.
2. Modifier computation: Compute the modifiers �k according to (4).
3. New input calculation: Obtain uk+1 by solving Problem (3) and

apply this set of inputs to the plant.
4. Iterate:  Set k := k + 1 and return to Step 2.

The key oft-stated motivation for applying this algorithm is the
following upon-convergence guarantee.

Theorem 1. (First-order critical point upon convergence). Assume
that the minimization of (3) always yields a first-order critical point
of the modified objective function �p̂(u) + �T

k u and that Algorithm 1
has converged to a fixed point u∞. It follows that u∞ is a first-order
critical point of �p.

Proof. The result follows immediately from the fact that a first-
order critical point for an unconstrained problem is defined entirely
by the function’s derivatives at that point. As these must match
for the modified model and the plant at any iterate, including u∞,
it follows that finding a first-order critical point for the modified
function implies finding one for the plant. �

3. The basic trust-region algorithm

A theoretically rigorous approach for iteratively minimizing a
nonlinear function in the mathematical optimization context is
that of trust-region methods. In this section, we will consider what
attempting to solve Problem (2) in this framework would entail.

Let us start by stating the basic trust-region algorithm for solv-
ing (2). This is essentially the algorithm provided in the well-known
monograph on trust-region methods (Conn et al., 2000, Ch. 6) but
with a few additional simplifications and some notational changes.
Namely, we use the 2-norm instead of the general p-norm and
explicitly distinguish between the reference iterates, u∗

k
, and the

iterates applied to the plant, uk.

Algorithm 2 (Basic trust-region algorithm).

1. Initialization: The initial point, u0, and initial trust-region radius,
�0 > 0, are provided, together with the constants �1, �2, �1, and
�2 satisfying 0 < �1 ≤ �2 < 1 and 0 < �1 ≤ �2 < 1. Set k := 0, u∗

0 := u0,
and apply u0 to the plant to obtain �p(u∗

0) = �p(u0).
2. Model construction: Construct the model mk, which is an approxi-

mation of �p over the trust region B(u∗
k
, �k), i.e., over a Euclidean

ball of radius �k centered at u∗
k
.

3. New input candidate calculation:  Compute a candidate point
uk+1 ∈ B(u∗

k
, �k) that “sufficiently reduces the model” mk.

4. Acceptance of the candidate point: Apply uk+1 to the plant to obtain
�p(uk+1). Define:

�k := �p(u∗
k
) − �p(uk+1)

mk(u∗
k
) − mk(uk+1)

. (5)

If �k ≥ �1, then set u∗
k+1 := uk+1. Otherwise, set u∗

k+1 := u∗
k
.

5. Trust-region radius update:  Set �k+1 such that

�k+1 ∈

⎧⎪⎨
⎪⎩

[�k, ∞)  if �k ≥ �2,

[�2�k, �k] if �k ∈ [�1, �2),

[�1�k, �2�k] if �k < �1.

(6)

6. Iterate: Set k := k + 1 and return to Step 2.

Let us now state the assumptions sufficient to prove the global
convergence of Algorithm 2 to a first-order critical point (Conn et al.,
2000). The following are assumed about the nature of the plant:

Assumption 1. �p is C2 (twice continuously differentiable) on R
nu .

Assumption 2. �p is lower-bounded on R
nu .

Assumption 3. The Hessian of �p is upper-bounded on R
nu .

As mentioned in Conn et al. (2000), Assumption 3 is often too
strong and could actually be restricted to the subspace of R

nu where
the iterates lie. However, as this subspace is not known a priori,  R

nu

is used for notational convenience.
The following assumptions are made on the model:

Assumption 4. For all k, mk is C2 over B(u∗
k
, �k).

Assumption 5. mk matches �p locally to first order at every k, i.e.:

mk(u∗
k) = �p(u∗

k), (7)

∇mk(u∗
k) = ∇�p(u∗

k). (8)

Finally, one requires the following assumption on the algorithm
used to solve the trust-region subproblem with regard to its ability
to achieve “sufficient reduction” in the model:

Assumption 6. There exists a constant � ∈ (0, 1) such that for all
k:

mk(u∗
k) − mk(uk+1) ≥ �‖∇mk(u∗

k)‖ min

[ ‖∇mk(u∗
k
)‖

ˇk
, �k

]
, (9)

with ˇk > 1 a finite constant.

One may  then state the following.

Theorem 2 (Global convergence to a first-order critical point). If
Assumptions 1–6 are satisfied, it then follows that the iterates gener-
ated by Algorithm 2 converge asymptotically to a first-order critical
point, i.e.:

lim
k→∞

‖∇�p(u∗
k)‖ = 0. (10)

Proof. The reader is referred to Theorem 6.4.6 in Conn et al.
(2000). Note that we  have, for simplicity, used a slightly stronger
assumption and have assumed that mk is C2 over B(u∗

k
, �k). The

two assumptions made by Conn et al. (2000) – namely, that over
B(u∗

k
, �k) the model mk is twice differentiable and that its Hessian

is bounded – are implied by the single C2 assumption here. �

4. Equivalence and a globally convergent
modifier-adaptation scheme

Both the modifier-adaptation and trust-region algorithms seek
to minimize �p by iteratively optimizing a local approximation of
�p around each u∗

k
. The key differences between the two  may be

summarized as follows:
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