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a  b  s  t r  a  c  t

The  ideal  adsorbed  solution  theory  (IAST)  is the  most  widespread  theory  for multicomponent  adsorption
interpretation.  It  postulates  the existence  of  an  adsorbed  phase  which  behaves  as a Raoult  ideal  solution.
The  theory  results  in a system  of nonlinear  algebraic  equations  which  are  solved  to  know  the  composition
of  the  adsorbed  mixture  at equilibrium.  In  this  paper  an  investigation  on  an alternative  method  for  the
IAST  equations  solution  is  proposed  which  is based  on  the  minimisation  of an objective  function  repre-
senting  the  iso-spreading  pressure  condition.  This  approach  to the solution  of the IAST  equations  reduces
in  some  cases  the  computational  effort  and  mitigates  the issues  of  the  currently  adopted  approaches
(inversion  of functions  and  initial  guess).  For  binary  systems,  direct  search  minimisation  approach  is
faster  than  the  classic  IAST equations  solution  approach  up to 19.0  (Dual  Langmuir  isotherm)  and  22.7
times  (Toth  isotherm).  In  ternary  systems,  this  difference  decreases  to 10.4  (O’Brien  and  Myers  isotherm)
times.  Compared  to FASTIAS  approach,  direct  search  minimisation  is up to 4.2  times  slower  in  ternary
systems.

©  2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Adsorption materials are increasingly attracting interest
because they permit almost selectively the separation of targeted
compounds, often reducing energy consumption compared with
traditional separation techniques. Thanks to their ability of selec-
tively capturing single compounds from complex multicomponent
mixtures (Minceva and Rodrigues, 2005) and the suitability of trigg-
ering the heat using a concentration swing (Yu et al., 2013), new
adsorptive technologies are currently commercialised (Dawoud
et al., 2012; Ramaswamy et al., 2013; Santori et al., 2013) or at R&D
stage (Liu et al., 2011; Santori et al., 2014). In all cases, adsorption
thermodynamics plays a fundamental role in the system design.

In the majority of practical cases, the separation of a selected
compound from a multicomponent mixtures is required and conse-
quently multicomponent adsorption thermodynamic theories are
regarded with a particular interest. Presently, the most widespread
multicomponent adsorption theory is the ideal adsorbed solution
theory (IAST) (Myers and Prausnitz, 1965). The reason of its success
consists in the possibility to predict multicomponent adsorption
equilibrium from single component adsorption isotherms.

In the IAST, an ideal gas phase and an adsorbed phase are in
equilibrium. The adsorbed phase is considered an ideal solution
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following the Raoult’s law. In several cases this is an acceptable
assumption or can offer a useful initial result for a more refined
interpretation (Cessford et al., 2012; Yun et al., 2002).

Multicomponent gaseous mixtures are considered in this paper,
but the IAST can be applied similarly to liquid mixtures. The math-
ematical formulation of the problem consists in the solution of the
following algebraic-integral equations:

Ptotyi = P0
i xi i = 1, 2, ....NC (1)

NC∑
i

xi = 1 (2)

ni = fi(P
0
i , T) i = 1, 2, ....NC (3)

�iA

RT
=

∫ P0
i

0

nid(ln (P0
i )) i = 1, 2, ....NC (4)

where Ptot [kPa] is the total pressure of the gaseous mixture flowing
on the adsorbent surface, yi is the molar fraction of the compo-
nent i of the non-adsorbed mixture, xi is the molar fraction of the
component i in the adsorbed phase, NC is the total number of com-
ponents, ni [mol/kg] is the adsorption amount of component i from
the adsorption isotherm, P0

i
[kPa] is the surface pressure of the

component i, T [K] is the equilibrium temperature, �i [kPa m] is
the specific spreading pressure of the component i, A [m2/kg] is the
specific surface area covered by the adsorbed mixture. For the solu-
tion of the Eqs. (1)–(4) the condition of thermodynamic equilibrium
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Nomenclature

P pressure [kPa]
Ptot total pressure of the non-adsorbed mixture [kPa]
P0

i
surface pressure of the component i [kPa]

yi molar fraction of the component i in the non-
adsorbed mixture

xi molar fraction of the component i in the adsorbed
mixture

ni adsorbed amount of compinent i [mol/kg]
�0

i
spreading pressure of the component i at equilib-
rium [kPa m]

A specific surface area covered by the adsorbed mix-
ture [m2/kg]

R universal gas constant [kJ/(mol K)]
T equilibrium temperature [K]
NC number of components participating in the adsorp-

tion
qi specific amount adsorbed of component i in the

adsorbent [mol/kg]
qtot specific amount adsorbed of mixture [mol/kg]
fbinary objective function in the case of binary mixture
fternary objective function in the case of ternary mixture

must be considered. The system is at equilibrium when the reduced
spreading pressure (�iA/(RT)) has the same value for each compo-
nent. So the equilibrium condition is represented by the following
iso-spreading pressure condition:

�iA

RT
= constant i = 1, 2, .....NC (5)

The problem can be solved giving Ptot, yi and the adsorption
isotherms (fi(P0

i
, T) with parameters computed by single compo-

nent adsorption equilibrium data. The unknowns of the system are
xi, �i, P0

i
and q0

i
.

An extensive review of the different approaches proposed for
the solution of the problem above has been presented in [8], high-
lighting the following main issues of the described strategies:

1) An inversion of the spreading pressure function is needed and
only in few cases such inversion is analytical;

2) An initial guess should be provided in order to find a solution.

These issues are overcome following the method proposed in
(Rubiera Landa et al., 2013). The only claimed limit of the procedure
in (Rubiera Landa et al., 2013) consists in the computational load,
which is comparable with the classical solution approaches (Do,
1998; Myers and Valenzuela, 1986; Valenzuela and Myers, 1989),
making the method (FASTIAS) presented in (O’Brien and Myers,
1985) and successively refined in (O’Brien and Myers, 1988) still
the quickest numerical method for the solution of IAST equations.

In some cases explicit solution of the IAST equations can be
formulated for binary systems. In (LeVan and Vermeulen, 1981)
a method is presented for deriving explicit binary isotherms from
simple single isotherm (Langmuir and Freundlich) in form of series
expansions.

Assuming single isotherms fitted considering equal satura-
tion capacities, binary adsorption isotherms have been derived
for Brunauer-Emmet-Teller (BET)-Langmuir, BET-BET, Langmuir-
Langmuir, anti-Langmuir-anti-Langmuir and quadratic-quadratic
(Gritti and Guiochon, 2003a, 2003b; Tarafder and Mazzotti, 2012).
In addition, explicit isotherms have been derived also without the
previous assumption (Frey and Rodrigues, 1994; Ilic et al., 2010).

Integration of IAST equations with adsorptive bed dynamics
equations is an additional issue. There are three possibilities to
couple IAST equations in adsorptive bed dynamics. Firstly, the
spreading pressure can be treated as a dependent variable of time
and space and added to the differential system describing bed
dynamics (Mota and Rodrigo, 2000). This results in a strongly non-
linear system of differential-algebraic equations which is difficult to
solve, computationally expensive and time consuming. For this rea-
son the most common methodology consists on the computation of
the adsorption equilibrium separately to bed dynamics in each time
step. Also the approach is time consuming because it obliges to exit
and enter continuously the IAST equations solver with new condi-
tions. The third strategy is the use of the B-Spline approach (Santos
et al., 2011). It allows to pre-compute the equilibrium states and
this can mitigate the issues for the binary system case, but for more
than two  components the B-Spline approach results in additional
multidimensional fitting issues, losing its advantages.

This paper presents an investigation on the solution of the IAST
equations using analytical expression of the spreading pressures
for the adsorbed components and a direct search minimisation
approach for the iso-spreading pressure condition of Eq. (5). The
method is tested on a number of adsorption isotherms and on
binary and ternary systems.

The immediate way  to implement direct search methods for
adsorptive bed dynamics is the use of a separate solver. The pro-
posed investigation is not a contribution to the solution of these
issues, which are still open.

On the basis of the reported results, direct search methods are
expected to reduce the time spent for equilibrium calculations in
comparison with the traditional IAST method and consequently the
overall bed dynamics simulation times.

2. Solution of the IAST equations through direct search
minimisation methods

The IAST equation system can be reduced through successive
substitution of variables to a smaller system of iso-spreading pres-
sure conditions. Table 1 shows the analytically integrated form of
the spreading pressure for some adsorption isotherms. The spread-
ing pressure are expressed in terms of molar fractions xi through
a preliminary change of variable from P0

i
to xi substituting the Eq.

(1)–(4).
For sake of clarity, taking the Dual Langmuir isotherm, spreading

pressure in terms of molar fraction is obtained by the following
change of variable:

d ln
(

Ptotyi

xi

)
= − 1

xi
dxi (6)

Accordingly, the spreading pressure integral becomes:
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(
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xi + Ptotyib1,i
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xi + Ptotyib2,i

)
dxi

(7)

The integration of Eq. (7) results in the expression listed in
Table 1 for Dual Langmuir isotherm. An additional result of this
paper is represented by the analytical expression for spreading
pressure of the Unilan isotherm, which was deemed not com-
putable (Do, 1998).

Using the spreading pressures listed in Table 1, the iso-spreading
pressure condition can be set as a minimisation problem. Using
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