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a  b  s  t  r  a  c  t

The  temperature  gradients  and  distribution  evolution  within  the  crystal  domain  in Czochralski  crystal
growth  process  have  important  role  in  produced  crystal’s  quality.  Precise  and tight  regulation  of  tem-
perature  distribution  and gradients  is the  most  promising  approach  to  ensure  the  crystal  quality.  In  this
work,  the  coupled  crystal  pulling  dynamics  and  heat  transfer  models  in Czochralski  crystal  growth  with
a  time-varying  boundary  is considered.  The  moving  boundary  finite  element  method  is  used  to  obtain
the  optimal  reference  temperature  trajectory  associated  with  the  reference  crystal  shape  taking  into
account  constraints  on  input  and the  temperature  gradients.  The  obtained  reference  trajectory  is  used to
implement  a model  predictive  control  strategy  to track  the  reference  temperature  despite  uncertainties
in  crystal  domain  geometry  evolution  and  disturbances.  Finally,  the  proposed  method  is implemented
on  a high  fidelity  finite  element  process  model  with  non-planar  interface  and  results  are  presented  to
validate  the  success  of  the proposed  methodology.

© 2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Single crystals, due to unique mechanical, physical and elec-
trical properties are common materials in microelectronics,
optoelectronics and structurally robust and high temperature
resistant applications (Sinno and Brown, 1999; Sinno et al., 2000).
The Czochralski (Cz) crystal growth process is the most common
mass production process to produce single crystal. In Cz process,
the solid crystal is grown from molten material (Si, Ga, etc), starting
from a small crystal seed and slowly growing by solidification
of material at the melt-crystal interface. Due to the high-tech
nature of single crystal applications, the quality of the grown
crystal is of crucial importance. The crystal quality is defined by
physical properties of the produced crystal such as defects density
and developed residual stresses in the crystal. These defects and
residual stresses are caused by significant temperature gradients
in the crystal and can be regulated by introducing a controller
to limit possibly large temperature gradient fluctuations (see
(Gevelber and Stephanopoulos, 1987).

In order to realize process regulation in CZ crystal growth pro-
cess one needs process model. The Czochralski crystal growth
process modeling requires a sophisticated model of melt fluid flow,
thermal and heat transfer phenomena, solid-liquid interface and
pulling dynamics. There are recent studies focusing on modeling
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and simulation of the coupled phenomena together (Cao et al.,
2011; Demina and Kalaev, 2011). However for control purposes
a simplified model of the phenomena of interest would suffice
and usual assumptions are made to decouple specific processes to
achieve a reduced order model as a basis for model based control
synthesis. In the recent review on the automation of Czochralski
crystal growth process (Winkler et al., 2013), both the classical and
modern control realizations which are synthesized on the simpli-
fied process model description have been reported and critically
accessed (Winkler et al., 2010a, 2010b). At present time, one can
conclude that a successful controller synthesis relies on the inter-
play among feedback, feedforward control, the reference trajectory
tracking and reconstruction of non directly measurable process
states. Therefore, any controller realization is dependent on the
quality of the model used in controller synthesis.

In particular, due to a specific feature of the Czochralski crystal
growth process, the crystal shape undergoes time-varying changes
which introduces moving boundaries to the parabolic partial
differential equations (PDE) model of temperature evolution in
the crystal growth process. Along this line, there are several works
focusing on the model based controller design of parabolic PDE
models with time-varying boundary domain, see Armaou and
Christofides (2001a, 2001b), Rudolph et al. (2005). For example,
Armaou and Christofides (2001a, 2001b) have reduced the 2-D heat
transfer model on a rectangular domain of the crystal to a 1-D model
and synthesized nonlinear controller for temperature regulation.
Ng and Dubljevic (2012), Ng et al. (2013) studied optimal boundary
control of the 2-D temperature model of the Cz crystal growth
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process with moving boundaries which is coupled with the crystal
pulling dynamics. In these contributions, a simplified geometry
(e.g. 1-D or 2-D rectangular domain) is used for control synthesis,
however in realistic operation of Cz process, the crystal growth
starts from a small three dimensional irregularly shaped seed and
grows to a boule with relatively small fluctuations in desired radius.

One of the main obstacles in producing high quality large boules
of a grown crystal is the presence of thermal stresses during
the crystal cooling. The thermal stresses result in crystal crack-
ing and fracture in the crystal during the cooling process. The
critical stresses in the crystal depend on the crystal temperature
and are usually caused by temperature difference in radial direc-
tion (Gevelber and Stephanopoulos, 1987; Gevelber et al., 1988;
Fang et al., 2008). Controlling or limiting these stresses are cru-
cial to avoid crystal cracking and to ensure the crystal quality.
The conventional method to control these stresses are to adjust
the heater temperature in order to maintain the temperature dis-
tribution around desired levels, however for larger crystals this
method is not successful. In particular, the conventional meth-
ods are usually realized as off-line configuration accompanied
with large scale simulation studies. The modern control strategies
are helpful for on-line temperature distribution control, however
limitations associated with distributed temperature measurement
realization, the infinite-dimensional nature of the heat transfer
process, time-varying crystal boundaries, stringent performance
requirements reflected in grown crystal quality and coupled pulling
and heat transfer dynamics make the control implementation a
challenging task. One of the modern control realizations capable
of accounting for the aforementioned performance and process
characteristics in explicit way is the model predictive control.

Model Predictive Control (MPC) strategies due to their prac-
tical and industrially appealing advantages attracted quite a few
contributions in the area of Czochralski crystal growth and tem-
perature control. For example,Lee et al. (2005) used the MPC  to
determine a feedforward trajectory for crystal growth control.
Temperature distribution control in solid crystal and melt is also
performed by Ng et al. (2013), Irizarry-Rivera and Seider (1997)
where the main approach in these contributions is to use a reduced
order model of the complex dynamical system to apply the MPC
and ensure that desired performance objectives are satisfied. In
Irizarry-Rivera and Seider (1997) work, the lumped models are con-
sidered for both the pulling dynamics and bulk heat transfer and
then two different MPC  are coupled to control the radius and pulling
velocity. Although utilizing a more sophisticated model of the pro-
cess would be more accurate and due to the improved performance
recommended, the complexity and the computational efforts asso-
ciated with more detailed models must be weighted against ability
of these algorithms to be implemented on-line in real-time setting.

The control strategies have been previously developed to control
the crystal radius (Gevelber and Stephanopoulos, 1987; Neubert
and Winkler, 2012; Winkler et al., 2010a), pulling velocity (Winkler
et al., 2010a; Lee et al., 2005), melt temperature (Irizarry-Rivera
and Seider, 1997) and for stabilization of temperature distribu-
tion (Ng et al., 2013; Irizarry-Rivera and Seider, 1997; Armaou and
Christofides, 2001a), however to the best of authors’ knowledge,
there are no control strategies developed for optimal temperature
distribution tracking with the ultimate objective of reducing the
dislocation concentration distribution in grown crystal. Motivated
by this, the crystal growth practitioners would seek the control
strategy which maximizes crystal cooling without inducing a sig-
nificant dislocation generation.

In this work, a framework is provided for reference tempera-
ture profile tracking in the Czochralski crystal growth process in
the presence of temperature distribution and gradient constraints
which are directly linked to the quality of grown crystal. A prede-
fined reference crystal shape evolution is used to calculate the opti-

Fig. 1. Schematic of the Cz crystal growth process with the realistic geometry of the
process given in the left figure side, and geometric simplifications and parameters
given in the right figure side.

mal  temperature trajectory. The reference trajectory is determined
to achieve the maximum rate of crystal cooling and all constraints
associated with temperature and gradient distributions are taken
into account along with constraints on available actuator input. The
moving boundary finite element model (FEM) of the conduction-
convection thermal phenomena within the reference crystal shape
is used to determine the optimal temperature distribution tra-
jectory. Then the MPC  is designed to track desired temperature
distribution and satisfies stringent performance criteria.

The organization of the paper is given as following: after Section
1, a brief description of the pulling dynamics, heat transfer model
and thermal stresses are provided in Section 2. In the following
sections the optimization and the MPC  controller realizations are
presented and followed by numerical results and discussion.

2. Heat transfer model on moving boundary domain

The solid crystal growth process model, that we considered
in this work, consists of coupled crystal boule growth and heat
transfer dynamics. In general, the crystal growth model dynam-
ics depicts crystal radius and length evolution which determines
the domain boundaries of heat transfer model. On the other hand,
the crystal shape evolution is influenced by temperature distribu-
tion and thermal phenomena (see Fig. 3). This two-way coupling is
reduced to one-way coupling model realization using a robust con-
troller such that the influence of the temperature distribution on
the crystal growth dynamics is considered as a parametric uncer-
tainty in the crystal growth rate.

2.1. Crystal pulling dynamics model

The schematic of the crystal pulling dynamics along with the
notations are presented in Fig. 1. The pulling dynamics model is
derived assuming horizontal melt–solid interface (see Abdollahi
et al. (2014), Abdollahi and Dubljevic (2013)). The pulling dynamics
model is given by:
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ẋ2(t) = 2
�cx3(t)

[
Fext(t) − �c�Cgrowth

(
x2(t)

2
− Cgrowth

R2
cruc.

)]
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