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a  b  s  t  r  a  c  t

Oscillations  in  control  loops  are  one  of the  most  prevalent  problems  in  industrial  processes.  Due to
their  adverse  effect  on  the  overall  process  performance,  finding  how  oscillations  propagate  through  the
process  units  is  of  major  importance.  This  paper  presents  a method  for  integrating  process  causality  and
topology  which  ultimately  enables  to  determine  the  propagation  path  of oscillations  in  control  loops.
The  integration  is  performed  using  a  dedicated  search  algorithm  which  validates  the  quantitative  results
of the  data-driven  causality  using  the qualitative  information  on  plant  connectivity.  The outcome  is  an
enhanced  causal  model  which  reveals  the  propagation  path.  The  analysis  is demonstrated  on  a case  study
of an  industrial  paperboard  machine  with  multiple  oscillations  in  its drying  section  due  to valve  stiction.

©  2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Large-scale industrial systems are often subject to abnormal
events such as faulty operations, external disturbances and control
system failures leading to low productivity, increased operational
costs and sometimes even hazardous operations (Yang et al.,
2010a). In particular, oscillations in control loops are very common
in industrial processes and lead to poor control performance, low
product quality and excessive energy consumption (Yuan and Qin,
2013). Oscillations in control loops are typically caused by valve
problems such as excessive friction (stiction), poor tuning of con-
trollers or controller interactions (Hägglund, 1995). In large-scale
systems with many interacting control loops, oscillations can eas-
ily propagate through the process units in multiple paths, making
it difficult to determine the most probable propagation path.

In recent years, capturing causality between different process
variables has become a vital tool in the diagnosis of faulty systems
due to its ability to identify the propagation path of disturbances
(Heim et al., 2002; Yang et al., 2012). Typically, the outcome of
causal analysis is a causal model in the form of a signed directed
graph (SDG) representing process variables as nodes and causal
relationships as arcs (Heim et al., 2002).
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SDGs can be constructed from process knowledge and/or pro-
cess data. Models based on process knowledge can be developed
using mathematical equations describing the system (Maurya et al.,
2003, 2004, 2006) or they can be established directly from pip-
ing and instrumentation diagrams (P&IDs). Models which are
based on the physical layout of the process are typically referred
to as topology-based models or process connectivity models (Di
Geronimo Gil et al., 2011). Several techniques for extracting plant
connectivity information from P&IDs have been developed in
recent years (Yim et al., 2006; Thambirajah et al., 2007, 2009).
Topology-based models are qualitative, i.e., they do not provide
any information on the level of interactions among variables.

On the other hand, data-driven causal analysis utilizes histori-
cal process data in the form of time series and measures to what
extent the time series corresponding to specific variables influ-
ence each other. Usually, the analysis yields a causality matrix
which contains the structural information of the causal model.
Among the most commonly used methods are the cross-correlation
(Bauer and Thornhill, 2008), the Granger causality (Bressler and
Seth, 2010; Granger, 1969) and the transfer entropy (Bauer et al.,
2007; Schreiber, 2000) methods. Unlike process knowledge-based
modeling, data-driven modeling does not require prior informa-
tion on the intrinsic system. Moreover, it produces a quantitative
model due to its ability to estimate the level of interactions
among variables. However, the data-driven methods suffer from
several limitations and drawbacks. The main difficulty in data-
driven causal analysis is in establishing the statistical significance
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of the results, hereby eliminating redundant links from the causal
model. Furthermore, occasionally the causal model suggests sev-
eral hypotheses for the root cause or in the case of using several
methods each method points to a different potential source. In such
occasions, it is essential to utilize process knowledge for isolating
the most probable root cause. Indeed, both Bauer et al. (2005) and
Yang et al. (2012) concluded that process insights derived from pro-
cess schematic or site expertise are still essential for validating the
results of the data-driven methods.

Consequently, several attempts have been made in recent
years to combine data-driven causal analysis with topology-based
models. For instance, Yang et al. (2010b, 2012) applied the cross-
correlation and transfer entropy methods on an industrial case
study in order to validate an SDG based on process knowledge and
vice versa. Thambirajah et al. (2009) introduced the cause and effect
analyzer which combines a causality matrix derived from process
data and qualitative information about the process in the form
of a connectivity matrix which is captured from an XML  (exten-
sive markup language) description of the process schematic. Then,
if more than one probable root causes are detected, a search of
the process connectivity matrix determines whether a propagation
path is feasible and which one is most likely to be the root cause
and propagation path. However, in cases where the system has a
high degree of connectivity among the process units, finding fea-
sible propagation paths among the process components might not
be sufficient to capture precisely the causal topology.

The present study was designed to identify the propagation
path of oscillations in control loops by utilizing a dedicated search
algorithm which validates each entry in the causality matrix
obtained from the data-driven analysis using the connectivity
matrix extracted from the P&ID. The search algorithm has two
main functionalities: finding feasible propagation paths between
two control elements and determining whether a path is direct or
indirect. Consequently, the entries in the causality matrix which
do not represent genuine direct interactions are excluded and the
outcome is a refined causality matrix which contains the structural
information of the propagation path. The efficiency of the analysis
is successfully demonstrated on a case study of an industrial board
machine utilizing the Granger causality (GC) to obtain the initial
causality matrix while the connectivity matrix was  captured from
an AutoCAD P&ID as an XML  schema.

This type of analysis can be applied in conjunction with dif-
ferent fault detection methods (Venkatasubramanian et al., 2003)
in order to facilitate the fault diagnosis procedure and expedite
process recovery. Consequently, it can assist in identifying the pro-
cess units of concern once a certain fault is detected whilst gaining
valuable insights on the process dynamics.

This paper is organized as follows. Section 2 describes the data-
driven and topology based modeling techniques applied in the cur-
rent study and how they are combined using the search algorithm.
Section 3 describes the process case study and the fault propagation
analysis. The paper ends with concluding remarks in Section 4.

2. Fault propagation analysis

This section first provides an overview on topology based mod-
els and data-driven causal analysis. Due to practical reasons, the
section mainly concentrates on the methods which were imple-
mented in the current study. Then, the refinement procedure using
the search algorithm is described in detail including each of its
functionalities.

2.1. Generation of a topology-based model

There are two types of topology-based models: causal digraph
and connectivity matrix which can be considered as a graphical

and a numerical representation of the process schematics, respec-
tively. The digraph reflects physical or signal flows between the
equipment and instruments based on the physical layout of the
components it represents. Similarly to the digraph, the connectiv-
ity matrix indicates the relationships between process components
in the form of a binary matrix whose elements are assigned accord-
ing to the existence of a directional connection from the row
header component to the column header component (Sun, 2013;
Thambirajah et al., 2009).

In this study, topology data was  extracted from an electronic
P&ID which is drawn by the specialized Autodesk AutoCAD P&ID
drafting application that has been developed based on Autodesk
AutoCAD. In the developed application, the topology data is
exported in the format of ISO 15926-compliant XML  scheme
XMpLant (Noumenon, 2008).

The automated generation of topology information includes the
following tasks. First, the schematic information on the initial com-
ponent and the terminal component of every line segment, such as
pipes and control signals is included in the drawing. Secondly, this
information is attained through the database object of the drawing
which includes all the topology information, namely, the names of
the process components, the coordinates of the components and
the connections among them. Finally, this data is further processed
by MATLAB program and converted into connectivity information
which includes the tags, coordinates, and the connectivity between
process components (Sun, 2013).

2.2. Data-driven causal analysis

Yang and Xiao (2012) have recently reviewed and evaluated dif-
ferent data-driven methods for capturing causality. In practice, the
appropriate data-based method should be selected carefully based
on process dynamics, the available data and type of fault. The out-
come of the analysis is a causality matrix where each element (i, j)
in the matrix represents the causal relationship from variable i to
variable j. In this study, the analysis is aimed to identify causal rela-
tionships among controllers, thus, the nodes in the causal model
represent the controllers. We  used the Granger causality method
to obtain the initial causality matrix. However, due to the high level
of connectivity among the controllers, we employed the frequency
domain methods as well to verify the final results of the analysis
and to gain further insights on the level of interactions among the
controllers. A description of the methods which were employed in
the current study is given below.

2.2.1. Time domain Granger causality (GC)
Granger causality has received great attention in many areas due

to its ease of implementation and efficiency when investigating
causal relationships (Seth, 2005; Yuan and Qin, 2013). Moreover,
the method has been extended to multivariate (MV) time series
analysis (Geweke, 1982) which makes it highly beneficial when
investigating large-scale systems.

The basic notion of the GC is that if one time series affects
another series, then the knowledge of the former series should help
to predict the future values of the latter one (Granger, 1969). To
illustrate the concept of the method, consider two time series X1(t)
and X2(t) and their corresponding autoregressive (AR) model:

X1(t) =
p∑

j=1

A11,jX1(t − j) +
p∑

j=1

A12,jX2(t − j) + �1(t)

X2(t) =
p∑

j=1

A21,jX1(t − j) +
p∑

j=1

A22,jX2(t − j) + �2(t)

(1)
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